• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites notáveis]exercício

[limites notáveis]exercício

Mensagempor fff » Seg Fev 10, 2014 19:35

Boa noite, não consigo calcular estes limites:
\lim_{x \to +\infty }\frac{ln(2e^{2x}+e^{x}-3)}{x}
R:2
\lim_{x \to +\infty }(ln(2e^{2x}+e^{x}-3)-2x)
R:ln2
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [limites notáveis]exercício

Mensagempor e8group » Seg Fev 10, 2014 20:16

Boa noite .

Dica :

Para o primeiro , podemos utilizar o teorema do confronto . Para tal , note que

3e^{2x} (1 - \frac{1}{e^{2x}})=3(e^{2x} -1) =2e^{2x}  + e^{2x} -3   \geq  2e^{2x}  + e^x -3  \geq  e^{2x} para todo x .

Daí , aplicando o ln na desigualdade , vem :

2x + ln(3) + ln (1 - \frac{1}{e^{2x}}) \geq  ln(2e^{2x}  + e^x -3)  \geq  2x .

E assim , multiplicando-se a inequação por 1/x para x > 0 , obtemos

2 + \frac{1}{x} \cdot  ln(3)+\frac{1}{x} \cdot ln (1 - \frac{1}{e^{2x}}) \geq \frac{ln(2e^{2x}  + e^x -3)}{x}  \geq  2 .

Logo , pelo teorema do confronto o limite é 2 .

Tem outra ideia ?Pensou em resolve-ló de outra forma ?

O segundo limite é mais simples , basta notar que 2x = ln(e^{2x}) e em seguida utilizar a propriedade log_a(d) - log_a(k) = log_a(d/k) .

Comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limites notáveis]exercício

Mensagempor fff » Ter Fev 11, 2014 14:57

Pensei fazer uma mudança de variável: {e}^{x}=y, mas não consegui chegar ao resultado.
Em relação à 2ª, já consegui fazer:
\lim_{x\rightarrow +\propto} ln({2e}^{2x}+{e}^{x}-3)-ln({e}^{2x})=\lim_{x\rightarrow +\propto} ln(\frac{{2e}^{2x}+{e}^{x}-3}{{e}^{2x}})=\lim_{x\rightarrow +\propto}ln(2+{e}^{-x}-\frac{3}{{e}^{2x}})=ln(2+0-\frac{3}{+\propto})=ln(2+0-0)=ln(2)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}