por pam_nivens » Sáb Nov 28, 2009 21:26
Bem... eu fiz vários exercícios de integral indefinida e estava indo muito bem.
Cheguei em método da substituição e resolvi os primeiros exercícios até não entender por q o meu u estava dando diferente
no caso na seguinte integral :

dx (IGNOREM A LETRA A NA FÓRMULA, NÃO CONSEGUI TIRAR! É X ELEVADO AO QUADRADO) o meu problema deu u = x-3 no gabarito e resposta : -3/x -5/3x³ +c . Eu não enntendi por q o u é = a x-3 . Me ajudem por favor, tenho prova segunda !!!!!
-
pam_nivens
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Nov 26, 2009 17:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Biologia UFF
- Andamento: cursando
por marciommuniz » Dom Nov 29, 2009 00:58
Olá, não sei se entendi muito bem seu problema..
mas lembre-se
x²-6x+9 = (x-3)²
Arrumando a integral...

fazendo u=x-3
![\int{(x^2-6x+9)}^{11/3}dx=\int[{(x-3)}^2]^{11/3}dx = \int{(u)}^{2*11/3}dx \int{(x^2-6x+9)}^{11/3}dx=\int[{(x-3)}^2]^{11/3}dx = \int{(u)}^{2*11/3}dx](/latexrender/pictures/e8d9d109dcdfdc24d4308b3f715e2909.png)
=

+C
Acho que é isso, não sei se me confundi.
Vlw!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
-

marciommuniz
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 08, 2009 20:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Mudança de Variável
por DanielFerreira » Dom Abr 22, 2012 13:58
- 2 Respostas
- 1481 Exibições
- Última mensagem por DanielFerreira

Ter Abr 24, 2012 20:31
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de Variável
por DanielFerreira » Dom Abr 29, 2012 21:06
- 3 Respostas
- 1730 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 15:56
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variavel na integral
por matmatco » Ter Abr 23, 2013 22:29
- 0 Respostas
- 1050 Exibições
- Última mensagem por matmatco

Ter Abr 23, 2013 22:29
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variável em exercício de integração
por Skyliner » Qua Nov 25, 2009 23:02
- 2 Respostas
- 3347 Exibições
- Última mensagem por Skyliner

Qui Nov 26, 2009 01:08
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Mudança de variável
por VFernandes » Ter Jan 03, 2012 23:47
- 2 Respostas
- 2021 Exibições
- Última mensagem por VFernandes

Qui Jan 05, 2012 23:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.