por Victor Mello » Ter Nov 19, 2013 21:58
Galera, tentei achar a área dessa curva que deixei em anexo, e eu não consegui encontrar a resposta correta. O gabarito deu 128/15, e eu achei 64/5. Alguém poderia dizer onde ocorreu o erro? Bom, se alguém puder, eu agradeço

Em breve, mais dúvidas sendo postadas.
Obrigado.
- Anexos
-

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por e8group » Ter Nov 19, 2013 23:30
Analisando parte da região no primeiro quadrante ,podemos calcular esta área por
![\int_{0}^2 2x^2 - [x^4-2x^2] dx \int_{0}^2 2x^2 - [x^4-2x^2] dx](/latexrender/pictures/5d0d74fc31be099fdeab3cce55997f3a.png)
. Determinando o ponto

entre

e

que satisfaz

segue que a área da outra parte da região no quarto quadrante pode-se calculada por

(Sinal negativo pq a área está abaixo do eixo x ). Somando-se estes resultados e por simetria , a área da região será o dobro da soma acima .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Victor Mello » Qua Nov 20, 2013 00:28
Ahh sim! Parece que agora estou pegando jeito. Eu acho que o meu erro foi por causa da integral negativa, esqueci desse detalhe. Na verdade eu somei as áreas dessas duas curvas sem perceber que a integral negativa indica que está abaixo do eixo x, por isso que deu errado. Valeu pela dica

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área entre curvas. Sen(x) e x³ em [0, pi]. Alguém ajuda?
por vmoura » Dom Abr 02, 2017 17:56
- 0 Respostas
- 2946 Exibições
- Última mensagem por vmoura

Dom Abr 02, 2017 17:56
Cálculo: Limites, Derivadas e Integrais
-
- Duvida para achar Area entre curvas
por gabrielnandi » Qua Mai 30, 2012 18:23
- 4 Respostas
- 3115 Exibições
- Última mensagem por gabrielnandi

Seg Jun 18, 2012 01:40
Cálculo: Limites, Derivadas e Integrais
-
- Integral, achar a área da região entre as curvas
por Janoca » Sex Jun 06, 2014 17:24
- 5 Respostas
- 4648 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 21:42
Cálculo: Limites, Derivadas e Integrais
-
- [Ajuda]Área de Curvas
por Jhonata » Qua Jun 20, 2012 10:44
- 2 Respostas
- 1561 Exibições
- Última mensagem por Russman

Qua Jun 20, 2012 14:07
Cálculo: Limites, Derivadas e Integrais
-
- Área comum as curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:00
- 0 Respostas
- 991 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.