• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor joedsonazevedo » Sex Out 25, 2013 23:48

__________________________________________
Editado pela última vez por joedsonazevedo em Sáb Out 26, 2013 22:22, em um total de 2 vezes.
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Integral (Gráfico) - Cálculo de Área

Mensagempor e8group » Sáb Out 26, 2013 12:37

Dica :

Primeiramente faça um esboço das três curvas (esta tarefa costuma ser difícil ,neste caso não ! ),em seguida verifiquemos se há pontos em comum entre os pares de curvas possível. Assim, com estes dados conseguiremos construir o conjunto R que é a região limitada pelas curvas dadas . Está é a primeira etapa . Vamos verificar se estas curvas possuem pontos em comum ,porém antes , note que as funções f :  x \mapsto 4/x  , g : x \mapsto x/4 são dadas implicitamente por x f(x) = 4 e x = 4 g(x) (aqui trocamos y por g,f ).

O gráfico das funções g e y se intersectam apenas na origem (é fácil ver! ) . Agora suponhamos que o par ordenado (a,b) pertence ao gráfico das funções g,f .Então :

(a,b) = (a,g(a)) = (a,f(a)) ,logo

b = g(a) = f(a) . Ou seja ,

b = a/4 = 4/a . Resolvendo , encontrará a =\pm 4 .

Então , (4,1),(-4,-1) são os pontos que pertencem ao mesmo tempo ao gráfico de g,f .

De forma análoga , podemos determinar a interseção entre os gráficos das funções f e y .Fazendo isto , obterá estes pontos que são :

(1,4),(-1,-4) .

Agora tente prosseguir , se não conseguir post .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Integral

Mensagempor joedsonazevedo » Sáb Out 26, 2013 18:20

_______________________________________
Editado pela última vez por joedsonazevedo em Sáb Out 26, 2013 22:38, em um total de 2 vezes.
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Integral (Gráfico) - Cálculo de Área

Mensagempor e8group » Sáb Out 26, 2013 20:45

Recomendo que faça um esboço p/ acompanhar o raciocínio . Vamos trabalhar a principio apenas sobre a região limitada entre as três funções no primeiro quadrante .

Observe que a área desta região pode ser calculada através das áreas de duas regiões , a primeira limitada pelas funções y , g para x \in [0,1] e a segunda limitada pelas funções f,g para x \in [1,4] . As áreas destas regiões podem ser obtidas respc. por :

\int_{0}^{1} (y(x) - g(x))dx = \int_{0}^{1} (4x - x/4 )dx

e

\int_{1}^{4} (f(x)- g(x)) dx = \int_{1}^{4} (4/x - x/4 )dx .

Somando estas expressões , obtemos a área procurada


\int_{0}^{1} (y(x) - g(x))dx + \int_{1}^{4} (f(x)- g(x)) dx = \int_{0}^{1} (4x - x/4 )dx + \int_{1}^{4} (4/x - x/4 )dx ou ainda se preferir :


\int_{0}^{1} y(x) dx + \int_{1}^{4} f(x)dx - \int_{0}^{4} g(x) dx = \int_{0}^{1} 4x dx + \int_{1}^{4} 4/x dx -\int_{0}^{4} x/4  dx .

OBS.:

Por simetria , podemos obter a área total da região multiplicando o resultado acima por 2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}