• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações Paramétricas - Derivada da Curva]

[Equações Paramétricas - Derivada da Curva]

Mensagempor raimundoocjr » Sáb Out 19, 2013 20:38

Determine equações paramétricas da reta que é perpendicular ao plano 2x+4y+3z=0 e é também tangente à curva \alpha(t)=(2t, t²-1, t²-t).

Comentário: "caiu" na minha prova de Cálculo 2.

Sei que pelo menos um vetor normal ao plano é formado pelos coeficientes das variáveis, então: \vec{v}=(2, 4, 3), e a derivada da curva é: \alpha'(t)=(2, 2t, 2t-1). A equação vetorial da reta é: \vec{P}=\vec{P_{0}}+t\vec{v}.

Nota: Equação do Plano: a(x-x_{0})+b(y+y_{0})+c(z-z_{0})=0.
raimundoocjr
 

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.