• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite - Seno - Função Duas Variáveis]

[Limite - Seno - Função Duas Variáveis]

Mensagempor raimundoocjr » Seg Out 14, 2013 20:14

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 16 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.
\lim_{(x, y)\rightarrow (0, 0)}\frac{x^2sen^2y}{x^2+2y^2}

Resposta para o cálculo do limite: O limite não existe.

Definição de Limite de uma Função de Duas Variáveis (pelo menos):
Imagem
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)

Como faço para provar esse limite?
raimundoocjr
 

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor young_jedi » Seg Out 14, 2013 23:22

se fizermos o limite por dois caminhos diferentes e os resultados forem diferentes então o limite não existe
tomando o caminho x=y

\lim_{(x,y)\to(0,0)}\frac{x^2\sin^2y}{x^2+2y^2}

\lim_{(x,y)\to(0,0)}\frac{x^2\sin^2x}{x^2+2x^2}

\lim_{(x,y)\to(0,0)}\frac{\sin^2x}{3}=0

agora pelo caminho x=\sqrt{y^4-2y^2}

\lim_{(x,y)\to(0,0)}\frac{\sqrt{y^4-2y^2}^2\sin^2y}{\sqrt{y^4-2y^2}^2+2y^2}


\lim_{(x,y)\to(0,0)}\frac{(y^4-2y^2)\sin^2y}{y^4}

\lim_{(x,y)\to(0,0)}\frac{(y^2-2)\sin^2y}{y^2}

\lim_{(x,y)\to(0,0)}(y^2-2).\frac{\sin y}{y}.\frac{\sin y}{y}=-2.1.1=-2

portanto o limite não existe
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor raimundoocjr » Ter Out 15, 2013 09:49

O fato de ter escolhido x=\sqrt{y^4-2y^2} foi por "Tentativa e Erro, Tentativa e Acerto"? Ou você pode me dar alguma dica quando forem limites assim, em termos de qual curva "aproximar" ou "substituição realizar"?
raimundoocjr
 

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor young_jedi » Ter Out 15, 2013 19:10

Então, foi por tentativa e erro mesmo, infelizmente não existe uma regra geral para encontrar dois caminhos para escolher
neste caso por exemplo, encontrar um caminho que desse limite igual a 0 foi simples, então a dificuldade foi encontrar um caminho para que o limite fosse diferente de zero, oque eu pensei neste caso foi utilizar o limite fundamental de \frac{\sin x}{x} para conseguir isto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.