por raimundoocjr » Seg Out 14, 2013 20:14
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 16 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.

Resposta para o cálculo do limite: O limite não existe.
Definição de Limite de uma Função de Duas Variáveis (pelo menos):

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)
Como faço para provar esse limite?
-
raimundoocjr
-
por young_jedi » Seg Out 14, 2013 23:22
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por raimundoocjr » Ter Out 15, 2013 09:49
O fato de ter escolhido

foi por "Tentativa e Erro, Tentativa e Acerto"? Ou você pode me dar alguma dica quando forem limites assim, em termos de qual curva "aproximar" ou "substituição realizar"?
-
raimundoocjr
-
por young_jedi » Ter Out 15, 2013 19:10
Então, foi por tentativa e erro mesmo, infelizmente não existe uma regra geral para encontrar dois caminhos para escolher
neste caso por exemplo, encontrar um caminho que desse limite igual a 0 foi simples, então a dificuldade foi encontrar um caminho para que o limite fosse diferente de zero, oque eu pensei neste caso foi utilizar o limite fundamental de

para conseguir isto.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite de Função de Duas Variáveis
por raimundoocjr » Qui Out 10, 2013 22:29
- 0 Respostas
- 1652 Exibições
- Última mensagem por raimundoocjr

Qui Out 10, 2013 22:29
Cálculo: Limites, Derivadas e Integrais
-
- Limite de duas variaveis
por Tixa11 » Seg Abr 01, 2013 13:13
- 1 Respostas
- 2192 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 11:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Duas variaveis
por fabriel » Sáb Jun 15, 2013 16:48
- 2 Respostas
- 2486 Exibições
- Última mensagem por temujin

Sáb Jun 15, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Limite - Duas Variáveis (Indeterminação)]
por raimundoocjr » Qui Out 17, 2013 21:55
- 1 Respostas
- 3639 Exibições
- Última mensagem por Man Utd

Ter Jun 17, 2014 13:05
Cálculo: Limites, Derivadas e Integrais
-
- [Limite Com Duas Variáveis] - Simplificação de Fração
por Vitor2+ » Dom Jul 08, 2012 03:19
- 2 Respostas
- 4230 Exibições
- Última mensagem por Vitor2+

Dom Jul 08, 2012 11:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.