• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Módulo

[Integral] Módulo

Mensagempor iagoyotsui » Ter Set 24, 2013 19:18

Olá pessoal, to com uma duvida em um exercicio de calculo1 de integral.

o exercicio é o seguinte:

? ?x-x²? dx

o limite é entre 2 e -1
e o exercicio ainda pede pra fazer a área no gráfico, mais nao dou muita importancia, na realidade minha duvida esta em como vou separar entre integral negativa e positiva.
até onde sei eu teria que fazer duas integrais uma negativa com intervalo de 0 a -1 e outra positiva entre 2 e 0.
se puderem me ajudar fico grato. abraço
iagoyotsui
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 24, 2013 19:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Módulo

Mensagempor Russman » Ter Set 24, 2013 21:43

Você precisa reescrever a função por partes. Veja que , seja f(x) = x - x^2, f(x<1)<0 e f(0<x<1)>0 e f(x>1)<0 de modo que

f(x) = \left\{\begin{matrix}
x-x^2 & [0,1]  \\ 
 -x+x^2& (- \infty  , 0] \cup [1, \infty )
\end{matrix}\right..

Daí, o intervalo de integração [-1,2] deve ser dividido como [-1 , 1] \cup [0,1] \cup [1,2].

\int_{-1}^{2} \left | x-x^2 \right |dx = \int_{-1}^{0}\left (-x+x^2  \right )dx + \int_{0}^{1}\left (x-x^2  \right )dx + \int_{1}^{2}\left (-x+x^2  \right )dx

Só resolver as integrais agora. Acredito que o resultado seja \frac{11}{6}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}