por iagoyotsui » Ter Set 24, 2013 19:18
Olá pessoal, to com uma duvida em um exercicio de calculo1 de integral.
o exercicio é o seguinte:
? ?x-x²? dx
o limite é entre 2 e -1
e o exercicio ainda pede pra fazer a área no gráfico, mais nao dou muita importancia, na realidade minha duvida esta em como vou separar entre integral negativa e positiva.
até onde sei eu teria que fazer duas integrais uma negativa com intervalo de 0 a -1 e outra positiva entre 2 e 0.
se puderem me ajudar fico grato. abraço
-
iagoyotsui
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 24, 2013 19:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Ter Set 24, 2013 21:43
Você precisa reescrever a função por partes. Veja que , seja

,

e

e

de modo que
![f(x) = \left\{\begin{matrix}
x-x^2 & [0,1] \\
-x+x^2& (- \infty , 0] \cup [1, \infty )
\end{matrix}\right. f(x) = \left\{\begin{matrix}
x-x^2 & [0,1] \\
-x+x^2& (- \infty , 0] \cup [1, \infty )
\end{matrix}\right.](/latexrender/pictures/057f3ec73661d2b132b0234e56f35d07.png)
.
Daí, o intervalo de integração
![[-1,2] [-1,2]](/latexrender/pictures/939b17134a44bb821e6c01efd044b32e.png)
deve ser dividido como
![[-1 , 1] \cup [0,1] \cup [1,2] [-1 , 1] \cup [0,1] \cup [1,2]](/latexrender/pictures/270ef460f89e7a513526608c4bcea7bc.png)
.

Só resolver as integrais agora. Acredito que o resultado seja

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral do módulo?
por Questioner » Dom Mai 16, 2010 18:15
- 2 Respostas
- 32694 Exibições
- Última mensagem por LuizAquino

Qui Abr 21, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- Integral com módulo.
por adecris » Sex Nov 11, 2011 13:01
- 1 Respostas
- 4427 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 17:12
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida com modulo]
por Giu » Qua Fev 08, 2012 16:08
- 1 Respostas
- 7369 Exibições
- Última mensagem por LuizAquino

Qua Fev 08, 2012 16:53
Cálculo: Limites, Derivadas e Integrais
-
- [integral envolvendo módulo]
por Fabio Wanderley » Sex Dez 14, 2012 11:14
- 3 Respostas
- 2696 Exibições
- Última mensagem por young_jedi

Sex Dez 14, 2012 16:04
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] com modulo nos limites de integração
por flavia_carolinee » Ter Jun 04, 2013 18:32
- 0 Respostas
- 2663 Exibições
- Última mensagem por flavia_carolinee

Ter Jun 04, 2013 18:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.