• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Imprópria

Integral Imprópria

Mensagempor Man Utd » Sex Ago 09, 2013 16:09

Resolva a seguinte integral imprópria:
\\\\ \int_{-\frac{pi}{3}}^{\frac{pi}{3}}tg^{3}(3x) dx

Gabarito: Diverge.


minha tentativa:

os pontos de descontinuidades são -pi/6 e pi/6.

\\\\ \int_{-\frac{pi}{3}}^{\frac{pi}{3}}tg^{3}(3x) dx=\lim_{t\rightarrow -\frac{pi}{6}^{-}}\int_{-\frac{pi}{3}}^{t}tg^{3}(3x)dx+\lim_{t\rightarrow -\frac{pi}{6}^{+}}\int_{t}^{0}tg^{3}(3x)dx+\lim_{t\rightarrow \frac{pi}{6}^{-}}\int_{0}^{t}tg^{3}(3x)dx+\lim_{t\rightarrow \frac{pi}{6}^{+}}\int_{t}^{\frac{pi}{3}}tg^{3}(3x)dx

Dúvida: Meu desenvolvimento está correto? se não por que está errado?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.