Questões: 25 e 26
http://www.dma.ufv.br/downloads/MAT%201 ... 012-II.pdf
Vlw, pela ajuda!

e
os catetos do triângulo que são função do tempo, pois seus comprimentos variam linearmente com o mesmo. Assim, a área , que também é função do tempo será dada por
![\frac{\mathrm{d} }{\mathrm{d} t} A(t) = \frac{1}{2} \frac{\mathrm{d} }{\mathrm{d} t}[x(t)y(t)] \frac{\mathrm{d} }{\mathrm{d} t} A(t) = \frac{1}{2} \frac{\mathrm{d} }{\mathrm{d} t}[x(t)y(t)]](/latexrender/pictures/1a34075169e113ffc583d801742964d0.png)
![\frac{\mathrm{d} }{\mathrm{d} t} A(t) = \frac{1}{2} [x \frac{\mathrm{d} }{\mathrm{d} t}y + y \frac{\mathrm{d} }{\mathrm{d} t}x ] \frac{\mathrm{d} }{\mathrm{d} t} A(t) = \frac{1}{2} [x \frac{\mathrm{d} }{\mathrm{d} t}y + y \frac{\mathrm{d} }{\mathrm{d} t}x ]](/latexrender/pictures/cdeb48e51d261a2ada33e8fa596743a2.png)
.


Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.