• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] como calcular

[Derivadas] como calcular

Mensagempor ma-mine » Sáb Jul 13, 2013 15:24

considere a função real de variável real w'(w)=x.lnx
Determine w(x) sabendo que w(1)=0


Alguem me saberá ajudar nesta questão?
ma-mine
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 13, 2013 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em gestão de empresas
Andamento: cursando

Re: [Derivadas] como calcular

Mensagempor young_jedi » Dom Jul 14, 2013 11:54

A equação é

w'(w)=x.ln(x)

ou

w'(x)=x.ln(x)

?
se for a segunda é so realizar a integral
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] como calcular

Mensagempor ma-mine » Dom Jul 14, 2013 15:54

a equação é w'(x)

e já agora, não a outra maneira de resolver sem utilizar a integral?
ma-mine
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 13, 2013 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em gestão de empresas
Andamento: cursando

Re: [Derivadas] como calcular

Mensagempor e8group » Dom Jul 14, 2013 19:00

Se permite-me participar da conversar ,caso você ainda não aprendeu técnicas de integração.Alternativamente, o que podemos fazer é pensar em uma função que sua derivada é x \cdot ln(x) .Neste caso é fácil determinar tal função . Comece observando que a função w é dada porw(x) = p(x)\cdot ln(x) +  q(x) onde p,q são polinômios . Derivando então w em ordem a x , obtemos :

w'(x) = [p(x)\cdot ln(x) +  q(x)]' = p'(x) \cdot ln(x) + \frac{p(x)}{x} + q'(x) = x \cdot ln(x) . Comparando a igualdade ,só podemos ter , p'(x) = x e \frac{p(x)}{x} + q'(x) = 0 .Assim , fica fácil ver que p(x) = \frac{x^2}{2} (Por quê ? ) e portanto ,


q'(x) =  - \frac{1}{2} x ;donde segue q(x) = - \frac{1}{4} x^2 + k onde ké uma constante (pois,(- \frac{1}{4} x^2 + k) ' =  -1/2x ) . Assim, a função w é definida por :

w(x) = \frac{x^2}{2} ln(x) - \frac{1}{4} x^2 + k . Agora basta usar que w(0) = 1 para determinar k .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}