• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE]

[LIMITE]

Mensagempor tatianaCAL » Sáb Jun 22, 2013 09:45

Olá, gostaria de resolver o seguinte limite sem utilizar a regra de L'Hospital!

Tentei multiplicar pelo conjugado, usar a equação fundamental da trigonometria, mas não consegui achar uma resposta :(

\lim_{x \to \pi}\,\frac{(1 + \cos x)}{\text{sen}2x}
tatianaCAL
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 22, 2013 09:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Sáb Jun 22, 2013 10:47

Já pensou em fazer a mudança de variável x - \pi = \beta ? Com esta mudança \beta tende a zero quando x tende a \pi .Acrescentando mais uma dica ,também podemos reescrever x como x + [\pi -\pi] = [x-\pi] + \pi .Assim , cos(x) = cos(\beta + \pi) = cos(\beta)cos(\pi) - sin(\beta)sin(\pi)   =  -cos(\beta) e sin(2x) = sin(2[[x-\pi] + \pi]) = sin(2\beta + 2\pi) =  sin(2\beta) .

Agora tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE]

Mensagempor tatianaCAL » Sáb Jun 22, 2013 12:59

Muito obrigada :)

Até tinha trocado a variável para o limite tender a zero, mas não tinha raciocinado x como x + (pi- pi).
O meu deu zero, pois multipliquei pelo conjugado, simplifiquei e ficou seno de 0 sobre 2cos 0 + 2 cos^2 0.

(Peço desculpas por não utilizar os códigos, mas estou no celular ai fica complicado)
tatianaCAL
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 22, 2013 09:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Sáb Jun 22, 2013 13:19

Não há de quê . O resultado limite realmente é zero ,e sua solução está correta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.