• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada, equação da reta

Derivada, equação da reta

Mensagempor Ana Cristina Lopes » Sáb Jun 15, 2013 19:54

Encontrar a equação da reta normal à curva y= (3x²-4x)² no ponto de abscissa x=2.

f(2)= (3.(2)² - 4.2)²
f(2)= 16

f(x)= (3x² - 4x)² = (3x² - 4x).(3x² - 4x) = 9x*4 -24x³+16x²

f '(x) = 36x³ - 72x² + 32x
f '(2)= 64

Equação da reta
y- 16= 64x -112

A resposta certa seria: x+64y - 1026

Att,

Ana
Ana Cristina Lopes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 20, 2012 17:24
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico Química
Andamento: formado

Re: Derivada, equação da reta

Mensagempor young_jedi » Sáb Jun 15, 2013 23:27

a reta que você encontrou é a reta tangente, mais ele quer a reta normal. A reta normal faz um ângulo de 90 graus com a reta tangente, sendo assim como você encontrou o coeficiente angular da reta tangente que é 64, então o coeficiente angular da reta normal sera

-\frac{1}{64}

se tiver duvidas para concluir comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.