por Ana Maria da Silva » Dom Jun 09, 2013 21:43
A reta tangente ao gráfico da função f(x)=


, no ponto de abscissa x=0, tem coeficiente angular igual a:
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Arthur_Bulcao » Seg Jun 10, 2013 03:56
Para achar o coeficiente angular da reta tangente ao gráfico de f(x) em um ponto
b, basta você
derivar f(x) (achando f'(x)), e aplicar o valor de
b na derivada encontrada (em f'(x), no caso).
Em suma: Basta achar f'(b)Aplicando no exercício:
1) Derivando f(x) obtemos:

2) Aplicando valor do ponto x em f'(x) (fazendo f'(0)), obtemos:

Então, o coeficiente angular da reta tangente ao gráfico de f(x) no ponto x=0 é zero.
Fica a Dica!
-
Arthur_Bulcao
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Mar 23, 2012 17:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Graduação em Engenharia Acústica
- Andamento: cursando
por Ana Maria da Silva » Qua Jun 12, 2013 20:27
Valeu .....grata!
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- TRAÇAR O GRÁFICO DA RETA TANGENTE
por ton_cineasta » Qui Abr 05, 2018 18:26
- 2 Respostas
- 6830 Exibições
- Última mensagem por ton_cineasta

Seg Abr 09, 2018 15:47
Cálculo: Limites, Derivadas e Integrais
-
- Derivada reta tangente ao gráfico
por Carolminera » Dom Jul 06, 2014 16:53
- 1 Respostas
- 2516 Exibições
- Última mensagem por e8group

Dom Jul 06, 2014 20:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivada reta tangente ao gráfico
por Carolminera » Qua Jul 23, 2014 11:33
- 1 Respostas
- 1663 Exibições
- Última mensagem por Russman

Qua Jul 23, 2014 21:08
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - reta tangente
por aline_n » Qui Abr 28, 2011 10:03
- 1 Respostas
- 1619 Exibições
- Última mensagem por LuizAquino

Qui Abr 28, 2011 10:16
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]Eq da reta tangente e normal
por may » Ter Mai 14, 2013 04:41
- 1 Respostas
- 1958 Exibições
- Última mensagem por adauto martins

Qua Out 15, 2014 21:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.