• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Continuidade em intervalos

[LIMITES] Continuidade em intervalos

Mensagempor ericaguedes_ » Sex Jun 07, 2013 23:58

Alguém poderia me ajudar, por favor? Meu resultado tem dado a=b=1/2, mas está errado. :(
Imagem
Obrigada desde já!!
ericaguedes_
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 19, 2013 11:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [LIMITES] Continuidade em intervalos

Mensagempor e8group » Sáb Jun 08, 2013 12:40

(i)

Só para fixar as ideias ,imagine que tenhamos um t> 0 suficiente pequeno de modo que a diferença \beta -t e o acréscimo de t em \beta se aproxima cada vez mais de \beta .Suponha que a função h : A \mapsto B esteja definida em \beta e L =h(\beta) .Se (\beta-t,\beta +t)\setminus{\beta} \subset A parece razoável dizer que para quaisquer números x em (\beta-t,\beta +t)\setminus{\beta} sempre h(x) se aproxima de L já que (\beta - t ) \to \beta ; (\beta +t) \to \beta ,mas isto não necessariamente acontece ,é o caso das funções descontínuas em \beta .

(ii) Suponha (1) \beta = 3 ,(2) \beta = -3 .Vamos aplicar o raciocínio (i) em seu exercício .Como D_f =[-3,3] basta impor que quando x \in (3-t,3) ,tem-se sempre f(x)\to f(3) ,ou seja ,\begin{cases} \exists lim_{x\to 3^{-}} f(x)  \\ lim_{x\to 3^{-}} f(x) = f(3) \end{cases} .Desta forma você obterá b que satisfaça a continuidade da função no ponto 3 .Analogamente ,você achará a que satisfaça a continuidade de f no ponto -3 ,basta impor \begin{cases} \exists lim_{x\to -3^{+}} f(x)  \\ lim_{x\to -3^{+}} f(x) = f(-3) \end{cases} .

Tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59