• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral de Riemann]

[Integral de Riemann]

Mensagempor Thyago Quimica » Qua Mai 29, 2013 15:47

Pelo posicionamento no livro ela teve ser bem simples, mais não to conseguindo fazer. Resp.: 20/3

\int_{1}^{4}\frac{1+x}{\sqrt[]{x}} dx
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: [Integral de Riemann]

Mensagempor Lennon » Sáb Jun 08, 2013 03:01

Tente fazer assim irmão.

\int_{1}^{4}\frac{1}{\sqrt[]{x}}+\frac{x}{\sqrt[]{x}}

\int_{1}^{4}{x}^{-\frac{1}{2}}+\frac{x}{{x}^{\frac{1}{2}}}

\int_{1}^{4}{x}^{-\frac{1}{2}}+{x}^{\frac{1}{2}}
Lennon
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 12, 2013 17:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral de Riemann]

Mensagempor Thyago Quimica » Sáb Jun 08, 2013 17:01

Obrigado pela ajuda Lennon

cheguei ao resultado, só não entendi como o \frac{\chi}{{\chi}^{\frac{1}{2}}} virou {\chi}^{\frac{1}{2}} que propriedade é essa ?
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: [Integral de Riemann]

Mensagempor Man Utd » Sáb Jun 08, 2013 18:08

Thyago Quimica escreveu:Obrigado pela ajuda Lennon

cheguei ao resultado, só não entendi como o \frac{\chi}{{\chi}^{\frac{1}{2}}} virou {\chi}^{\frac{1}{2}} que propriedade é essa ?

olá.

\\\\ \frac{x^{1}}{x^{\frac{1}{2}}} \\\\\\ x^{1-\frac{1}{2}} \\\\\\ x^{\frac{1}{2}}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: