por Jhenrique » Qui Mai 09, 2013 20:34
Fala pessoal, blz!?
Dúvida: vejam este vídeo:
http://www.youtube.com/watch?v=FEnNgUfE0qM?t=2m55s. Notem que a equação diferencial,

, é solucionada integrando-se os dois membros da igualdade, assim:

. Ok...
No entanto, lembrando que a definição de integral é

, pergunto: ao adicionar o sinal

na equação, não faltou adicionar o sinal

também? Quero dizer, o

e o

da equação

não são das integrais, eles já estavam aí antes das integrais aparecerem:

. Como me explicam isto?
Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Qui Mai 09, 2013 23:06
Na verdade existem várias interpretações para as integrais. São somatórios, são operadores, etc...
O método de resolver as eq. df. dessa forma é um exemplo onde a integral é aplicada como operador inverso ao operador diferencial. A forma que é exposta a solução é uma forma operacional, e não formal. Seria necessário estudar melhor esse tipo de equação para deduzir-seque a sua solução pode ser tomada dessa forma. Mas acredito que a interpretação da integral como operador lhe esclarece um pouco o método, não?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sex Mai 10, 2013 10:25
Esclarece +/- pois isso parece implicar no seguinte... suponha a equação

, então tanto faz integrar assim

ou assim

"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sex Mai 10, 2013 10:37
Não faz sentido aplicar a interal em funções isoladadas! Você precisa ter o diferencial de algo, pois a integral é o limite de uma soma de variações de uma dada variável. Estude a obtenção da área de curvas no plano que você vai entender o que estou dizendo.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sex Mai 10, 2013 17:11
Tô sacando...
Outra possibilidade para a mesma equação

é dividi-la por um diferencial qualquer, assim

. Correto?
E se a equação fosse esta

, então acho que é possível multiplicá-la por um diferencial qualquer, assim

, OU aplicar o diferencial no numerador assim

. Certo?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sex Mai 10, 2013 22:03
Mas qual o intuito de dividí-la pelo diferencial? Não se esqueça que os diferenciais de y e x não são independentes, pois y é função de x. A última relação que voce escreveu não é correta. Essas manipulações dos diferenciais como se fossem variáveis algébricas só podem ser assim por uma razão bem definida...se fossem derivadas parciais a manipulação de ''passa pra um lado multiplicando e pro outro dividindo'' não funciona. Cuidado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sáb Mai 11, 2013 15:36
O intúito é de tomar ciência de todos os casos possíveis, de saber quais são as alternativas que esta ferramenta (ED) me fornece. Para evitar pasmos, como o do operador de integração, p ex.
Agora eu consegui enxergar que integração e derivação são operações que combinam necessariamente duas variáveis e dois operadores. O que está obscuro para mim, é saber quando a manipulação desses elementos altera a igualdade...
Por exemplo, tomando a seguinte equação

É verdade que

e que

Mas não é verdade que

ou que

Fiquei confuso...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- separação de variáveis
por Thais Bomfim » Qua Dez 12, 2012 14:07
- 3 Respostas
- 2152 Exibições
- Última mensagem por Thais Bomfim

Qui Dez 13, 2012 00:22
Equações
-
- PVI- Separação de variáveis
por Crist » Sex Mar 15, 2013 21:43
- 1 Respostas
- 1603 Exibições
- Última mensagem por e8group

Sáb Mar 16, 2013 14:34
Equações Diferenciais Ordinárias e Aplicações
-
- Integral com separação de variáveis
por fernando ribeiro » Seg Nov 16, 2015 23:56
- 0 Respostas
- 1810 Exibições
- Última mensagem por fernando ribeiro

Seg Nov 16, 2015 23:56
Cálculo: Limites, Derivadas e Integrais
-
- [Achar limites de integração] Mudança de variáveis
por AlexandreTS » Sex Mar 30, 2012 18:01
- 1 Respostas
- 4831 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 18:48
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Constante de integração
por KleinIll » Dom Set 01, 2019 14:11
- 2 Respostas
- 5713 Exibições
- Última mensagem por KleinIll

Sex Set 06, 2019 18:39
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.