• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limites que tendem ao infinito com raízes

[LIMITE] Limites que tendem ao infinito com raízes

Mensagempor Mell » Qua Mai 01, 2013 15:21

Não consigo calcular este limite:

\lim_{x\rightarrow +\infty}\frac{\sqrt[5]{x^4+1+x}}{\sqrt[9]{x^7-x^2+3x}}

Vi vários exemplos de como se calcula quando o índice da raiz e a mair potência são iguais (como x² e raiz quadrada), mas neste caso com raiz quinta e raiz nona, não sei como proceder. Acho que se não houvesse as raízes o limite daria +infinito, mas com essas raízes não sei como começar. Alguém me ajuda??
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor e8group » Qua Mai 01, 2013 20:13

Quando o radicando é um polinômio como neste caso ,é interessante deixar o termo dominante(termo de maior grau com coeficiente não nulo de cada polinômio ) em evidência de cada polinômio .

Assim ,se x \neq  0, temos : x^4 +1 +x =  x^4(1 + 1/x^4 + 1/x^3) e x^7 - x^2  + 3x  =  x^7(1 - 1/x^5 + 3/x^6) .

Todas parcelas que contém "x" no denominador ,tendem a 0 para x > 0 muito grande .Desta forma ,o limite a ser calculado se resume a \lim_{x\to +\infty} \frac{\sqrt[5]{x^4}}{\sqrt[9]{x^7}} . Reescrevendo os radicais na forma de potência , \lim_{x\to +\infty} \frac{\sqrt[5]{x^4}}{\sqrt[9]{x^7}}  =  \lim_{x\to +\infty} \frac{x^{4/5}}{x^{7/9}} =  \lim_{x\to +\infty} x^{4/5 - 7/9}   =  \lim_{x\to +\infty} x^{1/45}  = \lim_{x\to +\infty} \sqrt[45]{x}   = +\infty.

OBS.:

mmc(5,9)  = 45 o que justifica x^{4/5 - 7/9} = x^{1/36} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor Mell » Sex Mai 03, 2013 22:45

Excelente!! Muito obrigada Santhiago, me ajudou muito! (:
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor e8group » Sáb Mai 04, 2013 02:41

De nada ,não há de quê .No entanto na última linha digitei errado é x^{1/45} ao invés de x^{1/36} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)