• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limites que tendem ao infinito com raízes

[LIMITE] Limites que tendem ao infinito com raízes

Mensagempor Mell » Qua Mai 01, 2013 15:21

Não consigo calcular este limite:

\lim_{x\rightarrow +\infty}\frac{\sqrt[5]{x^4+1+x}}{\sqrt[9]{x^7-x^2+3x}}

Vi vários exemplos de como se calcula quando o índice da raiz e a mair potência são iguais (como x² e raiz quadrada), mas neste caso com raiz quinta e raiz nona, não sei como proceder. Acho que se não houvesse as raízes o limite daria +infinito, mas com essas raízes não sei como começar. Alguém me ajuda??
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor e8group » Qua Mai 01, 2013 20:13

Quando o radicando é um polinômio como neste caso ,é interessante deixar o termo dominante(termo de maior grau com coeficiente não nulo de cada polinômio ) em evidência de cada polinômio .

Assim ,se x \neq  0, temos : x^4 +1 +x =  x^4(1 + 1/x^4 + 1/x^3) e x^7 - x^2  + 3x  =  x^7(1 - 1/x^5 + 3/x^6) .

Todas parcelas que contém "x" no denominador ,tendem a 0 para x > 0 muito grande .Desta forma ,o limite a ser calculado se resume a \lim_{x\to +\infty} \frac{\sqrt[5]{x^4}}{\sqrt[9]{x^7}} . Reescrevendo os radicais na forma de potência , \lim_{x\to +\infty} \frac{\sqrt[5]{x^4}}{\sqrt[9]{x^7}}  =  \lim_{x\to +\infty} \frac{x^{4/5}}{x^{7/9}} =  \lim_{x\to +\infty} x^{4/5 - 7/9}   =  \lim_{x\to +\infty} x^{1/45}  = \lim_{x\to +\infty} \sqrt[45]{x}   = +\infty.

OBS.:

mmc(5,9)  = 45 o que justifica x^{4/5 - 7/9} = x^{1/36} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor Mell » Sex Mai 03, 2013 22:45

Excelente!! Muito obrigada Santhiago, me ajudou muito! (:
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites que tendem ao infinito com raízes

Mensagempor e8group » Sáb Mai 04, 2013 02:41

De nada ,não há de quê .No entanto na última linha digitei errado é x^{1/45} ao invés de x^{1/36} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.