por giboia90 » Seg Abr 29, 2013 14:57
é uma pergunta em inglês so queria uma explicação do resultado?
the points where the function f(x)= [x] + |1 -x|, -1<=x<=3, where [.] denotes the greatest integer function, is not differentiable, are:
resolução;
![f(x)= \left[x \right]+\left|1 -x \right| f(x)= \left[x \right]+\left|1 -x \right|](/latexrender/pictures/8bdd9ca74d806c44fa118b5c768cc948.png)
.......,


...................


...................


...................


...................


...................

the only doubtful points are x = -1, 0, 1, 2, and 3. It can be easily seen that f(x) is differentiable at x= -1 but not differentiable at x = 0, 1, 2, and 3.
-
giboia90
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Dom Dez 04, 2011 01:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engeharia civil
- Andamento: cursando
por e8group » Seg Abr 29, 2013 15:57
Por definição ,

.
Assim ,podemos definir :

.
Retirando o módulo via definição ,temos :

.
Para verificar a continuidade ,basta calcular os limites (laterais) de cada extremo de cada intervalo .Lembrando que uma função é contínua sse

.Nos pontos em que a função é descontínua,pelo Lemma "Derivabilidade implica continuidade " podemos descartar a possibilidade da diferenciabilidade nestes pontos .Mas cuidado !! O recíproco deste Lemma não é verdadeiro .Nos pontos em que

é contínua devemos calular a derivada via definição .
Tente concluirf ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por giboia90 » Seg Abr 29, 2013 17:29
tem como fazer parte a parte de modo mais detalhado?
-
giboia90
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Dom Dez 04, 2011 01:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engeharia civil
- Andamento: cursando
por e8group » Seg Abr 29, 2013 18:49
Só por curiosidade ,já tentou esboçar o gráfico da função ? Este processo já fornece ideias de onde a função é descontínua , por conseguinte ,ela não será diferenciável nestes pontos .Vamos estudar a continuidade da função com respeito aos pontos

.
Considere :
i)

é contínua em

.
ii)

não é contínua em 0 .
OBS_1.: A função é descontínua também p/

,o argumento é semelhante .Deixo como exercício p/ tentar concluir .
Obs_2: Como diferenciabilidade implica continuidade já podemos afirmar que

não é derivável em tex] \{-0,1,2,3\}[/tex]
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.