• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas tangentes ao gráfico

Retas tangentes ao gráfico

Mensagempor Marcos_Mecatronica » Sáb Abr 27, 2013 19:58

Mostre que existem exatamente duas retas tangentes ao gráfico de y=(x+1)^3 que passam pela origem.Dê as equações dessas retas.
Marcos_Mecatronica
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 19, 2013 20:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Retas tangentes ao gráfico

Mensagempor young_jedi » Dom Abr 28, 2013 12:16

se são equações que passam pela origem então elas são

y=ax

a é a inclinação da reta sendo esta tangente a curva então ela é igual a derivada da equação no ponto

\frac{dy}{dx}=3(x+1)^2

então a equação sera

y=3(x_1+1)^2x

mais como no ponto de tangencia a reta e a cruva se interceptam então

(x+1)^3=3(x+1)^2x

x^3+3x^2+3x+1=3x^3+6x^2+3x

2x^3+3x^2-1=0

podemos ver que -1 é uma das raizes então temos

(x+1)(2x^2+x-1)=0

as raizes do polinomio de segundo grau são -1 e 1/2 então

2(x+1)^2(x-\frac{1}{2})=0

portanto os dois pontos de tangencia onde a reta tangente passa pela origem são em x=-1 e x=1/2 portanto nos temos que

a=3(-1+1)^2

a=0

portanto uma das retas tangente é

y=0

ou

a=3(\frac{1}{2}+1)^2

a=\frac{27}{4}

então a outra reta é

y=\frac{27}{4}x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)