• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Topologia do Espaço Euclidiano R^n

Topologia do Espaço Euclidiano R^n

Mensagempor 380625 » Qua Ago 17, 2011 18:15

Estou estudando o conceito de bola aberta e não consigo entender o que é um ponto interior a uma bola aberta.

Desculpa pela pouca informação pois estou muito confuso.
Grato
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Topologia do Espaço Euclidiano R^n

Mensagempor MarceloFantini » Qua Ago 17, 2011 20:41

Qual a sua dúvida, especificamente? Talvez algum exercício ou definição que não tenha ficado clara. Soa como se você estivesse confundindo conceitos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Topologia do Espaço Euclidiano R^n

Mensagempor marciosouza » Dom Abr 14, 2013 17:41

PONTO INTERIOR, segue da definição de que:

Def. Seja A(contido em)M e A(diferente de vazio). dizemos que um ponto x é interior de A, se existir uma bola aberta centrada em x e contida em A, de modo que:x\in Int(A)\Leftrightarrow \exists B(x,r)\subset A

Como exemplo:

Considere em R2 o conjunto dos pontos interiores à uma circunferência de centro (1,1)... todos os pontos internos à circunferência compõe a B(x,1) aberta ***já que os pontos sobre a circunferência pertencem à ela mas não são internos à mesma.
marciosouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 20, 2011 16:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.