por Douglas16 » Qua Abr 03, 2013 15:19
Questão:
Seja M um ponto que divide em duas partes iguais o arco AB de uma semi-circunferência, cujo diâmetro é

.
Um raio de luz é emitido desde A e atinge a semi-circunferência num ponto Q entre M e B, e então é refletido, cruzando o diâmetro AB no ponto P.
Obtenha o valor limite do comprimento do segmento AP quando o ponto Q se aproxima infinitamente do ponto B.

Minha resolução:
[Res.] Sendo O o centro da circunferência, sei que OP=

e ângulo OAQ= ângulo AQO= ângulo OQP.
Aplicando o teorema do seno no triângulo OQP e sabendo que , ângulo POQ= 2*(ângulo OAQ) e ângulo OPQ= pi-3*(ângulo OAQ), tenho que:


AP=

Portanto,

Correto ou errado?
Editado pela última vez por
Douglas16 em Qui Abr 04, 2013 02:11, em um total de 1 vez.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qua Abr 03, 2013 18:33
o angulo OPQ na verdade é

portanto pela relaçao do seno temos



mais o seu pensamento esta correto é este ai o camino
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Douglas16 » Qui Abr 04, 2013 02:11
Foi um erro na hora de digitar, vou corrigir o post.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Deixar comentários sobre erros e/ou acertos (2)
por Douglas16 » Qua Abr 03, 2013 15:34
- 1 Respostas
- 1971 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 19:18
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (3)
por Douglas16 » Qua Abr 03, 2013 15:52
- 1 Respostas
- 1695 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 19:36
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (4)
por Douglas16 » Qua Abr 03, 2013 15:56
- 1 Respostas
- 1770 Exibições
- Última mensagem por e8group

Sáb Abr 06, 2013 18:31
Cálculo: Limites, Derivadas e Integrais
-
- Noções básicas sobre erros aritmética
por bebelo32 » Sex Abr 13, 2018 02:25
- 0 Respostas
- 6600 Exibições
- Última mensagem por bebelo32

Sex Abr 13, 2018 02:25
Aritmética
-
- NÚMEROS INTEIROS,erros para menos
por Valmel » Qui Out 24, 2013 15:04
- 0 Respostas
- 1036 Exibições
- Última mensagem por Valmel

Qui Out 24, 2013 15:04
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.