• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função implícita]não entendi o enunciado do problema.

[Função implícita]não entendi o enunciado do problema.

Mensagempor marcosmuscul » Qua Abr 03, 2013 19:09

consigo derivar.
consigo isolar x.
mas creio que não seja isso que pede-se.
preciso de ajuda.
Anexos
função.JPG
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor e8group » Qua Abr 03, 2013 19:46

Considere uma equação nas variáveis x,y .Uma função y = f(x) é dada implicitamente por tal equação se ,\forall x\in D_f , o ponto (x,f(x)) satisfazer a equação .

A equação do segundo grau 2 em y (dada) tem solução em y :

y = \frac{-1 \pm \sqrt{1 - 4 \cdot x \cdot (x-1)}}{2x} .

Assim , a função y = \frac{-1 + \sqrt{1 -4x^2 + 4x}}{2x} é dada implicitamente pela equação xy^2  + x +y = 1 .

E ,é claro que a função y = \frac{-1 - \sqrt{1 -4x^2 + 4x}}{2x} também é dada implicitamente pela equação xy^2  + x +y = 1

Observe que ambas funções estão bem definidas \iff x\neq 0 e 1 -4x^2 + 4x \geq 0 .

Tente concluir .

OBS.: Anexe imagens se for estritamente necessário ,neste caso não o é .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor marcosmuscul » Qua Abr 03, 2013 19:57

nesse caso voce utilizou a fórmula usada pra encontrar as raízes de uma equação de 2°grau. até aí entendi.
mas...e se fosse uma expressão em que aparecesse y³ ao invés de y²?
teríamos que saber de cabeça a fórmula de encontrar raízes de equações de 3°grau?
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor e8group » Qua Abr 03, 2013 20:26

Não necessariamente ,há equações do terceiro grau que facilmente conseguimos calcular uma de suas raízes,desta forma poderemos fatorar este polinômio .Se esta equação possui mais duas soluções é fácil obter elas através da fórmula resolvente da equação do segundo grau .


Exemplo :

A equação -12+12 x-5 x^2+x^3 possui uma única raiz que é x = 2 ,pois

-12+12 x-5 x^2+x^3 =  (x-2)(x^2 -3x + 6) e x^2 -3x + 6 > 0 ,\forall x \in \mathbb{R} .

Já o próximo exemplo não é tão simples que é -20+39x- 58 x^2+x^3 = 0 neste caso é útil recorrer a fórmula resolvente para equações de grau 3 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.