• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]não consigo fazer com que o denominador não de zero.

[Limite]não consigo fazer com que o denominador não de zero.

Mensagempor marcosmuscul » Ter Mar 26, 2013 12:52

segue abaixo a expressão.
Amigos, já tentei de todo jeito que eu pude mas não consigo sair desta situação. Se alguém puder me ajudar eu agradeço.
Anexos
limite.JPG
esta é a expressão
limite.JPG (5.34 KiB) Exibido 1867 vezes
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Limite]não consigo fazer com que o denominador não de z

Mensagempor Russman » Ter Mar 26, 2013 14:08

É só ir fatorando os termos.

\frac{3(1-x^2)-2(1-x^3)}{(1-x^3)(1-x^2)} = \frac{3-2-3x^2+2x^3}{(1-x^3)(1-x)(1+x)} = \frac{-(1-x)(2x^2-x-1)}{(1-x)(x^2+x+1)(1-x)(1+x)} = \frac{-(2x^2-x-1)}{(x^2+x+1)(1-x)(1+x)}=\frac{-(x-1)(2x+1)}{(x^2+x+1)(1-x)(1+x)} = \frac{(2x+1)}{(x^2+x+1)(1+x)}

Agora para x=1 não há problema. Você deve calcular 1/2
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limite]não consigo fazer com que o denominador não de z

Mensagempor marcosmuscul » Ter Mar 26, 2013 19:48

obrigado amigo. calculo esclarecedor.
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.