por ruisu » Sáb Mar 02, 2013 20:22
Seja

tal que,
![f(x)[a,b] -> R f(x)[a,b] -> R](/latexrender/pictures/0d5732c38279dccfd37686291b1a2de4.png)
contínuo, prove que

Bom, meu professor passou esse exercício, e de forma alguma consegui resolve-lo, será que alguém pode me ajudar ?
-
ruisu
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Mar 02, 2013 20:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
por young_jedi » Dom Mar 03, 2013 21:46
pensei assim
vamos supor uma função F(x) sendo que

portanto

se a funão f(x) que é a derivada da função F(x) é positiva para qualquer valor de x no intervalo (a,b)
então a função F(x) é maior que F(a) para qualquer valor de x sendo a<x<b
portanto

sendoa assim

então concluimos que o valor da integral é positivo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por ruisu » Seg Mar 04, 2013 11:56
Obrigado ! Essa dúvida tava me consumindo já ! Só não entendia como. Mas agora entendi e com base nisso consigo resolver exercícios semelhantes !
-
ruisu
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Mar 02, 2013 20:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Dúvida com uma integral simples
por Leonardo Ribeiro » Sex Abr 03, 2015 20:02
- 1 Respostas
- 1999 Exibições
- Última mensagem por Leonardo Ribeiro

Sex Abr 03, 2015 21:06
Cálculo: Limites, Derivadas e Integrais
-
- Questão com integral
por Cristiano Tavares » Sáb Jun 11, 2011 00:06
- 1 Respostas
- 1732 Exibições
- Última mensagem por LuizAquino

Sáb Jun 11, 2011 18:25
Cálculo: Limites, Derivadas e Integrais
-
- Questão de integral
por MIchellegguimaraes37 » Sex Mai 15, 2015 06:39
- 3 Respostas
- 3964 Exibições
- Última mensagem por Cleyson007

Seg Mai 18, 2015 11:05
Cálculo: Limites, Derivadas e Integrais
-
- Questão de Integral
por marcos » Ter Mai 26, 2020 00:54
- 0 Respostas
- 5230 Exibições
- Última mensagem por marcos

Ter Mai 26, 2020 00:54
Cálculo: Limites, Derivadas e Integrais
-
- QUESTÃO INTEGRAL COM CONSTANTES!
por iel » Seg Jun 01, 2009 22:38
- 1 Respostas
- 3141 Exibições
- Última mensagem por Molina

Ter Jun 02, 2009 06:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.