• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor barbara-rabello » Qua Fev 27, 2013 16:24

Não estou conseguindo resolver essa integral. É por substituição simples?

\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv

Obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral

Mensagempor Jhonata » Qua Fev 27, 2013 17:10

barbara-rabello escreveu:Não estou conseguindo resolver essa integral. É por substituição simples?

\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv

Obrigada!


Vamos lá:

Inicialmente, pelas propriedades da integral, podemos reescrevê-la:

\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv = \frac{1}{2} (\int_{0}^{1} \sqrt[]{v^{2}+8}  dv - \int_{0}^{1}v  dv)

A segunda integral é facilmente obtida de modo que:

\int_{0}^{1}v  dv =  \frac{v^2}{2}|0\sim1 = \frac{1}{2}

A primeira integral é feita por substituição trigonométrica. Tomamos: v = 2\sqrt[]{2}tgu e dv =  2\sqrt[]{2}sec^2udu.

Então quando \sqrt[]{x^2+8}= \sqrt[]{8tg^2u+8}. Aplicando a identidade trigonométrica tg²u = sec²u - 1 substituimos, então:

\sqrt[]{8tg^2u+8} = \sqrt[]{8(sec^2x-1)+8} = 2\sqrt[]{2}secu.

Fazendo as substituições, vamos obter a integral:

\int_{0}^{1} \sqrt[]{v^{2}+8}  dv  = \int_{0}^{1}2\sqrt[]{2}sec^2u2\sqrt[]{2}secu du = 8\int_{0}^{1}sec^3u du

Tente resolver a partir dai, e lembre-se de 'juntar' o resultado já obtido na primeira integral e retornar a variável inicial 'v' na segunda.

Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Integral

Mensagempor barbara-rabello » Qua Fev 27, 2013 18:24

Olá!

Eu não poderia resolver a integral por substituição simples?
Por exemplo: w = v² +8
dw = 2v.

Eu tinha tentado assim, só fiquei na dúvida quanto ao sinal, pois o 2v é negativo.
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral

Mensagempor Jhonata » Qui Fev 28, 2013 00:53

.
Editado pela última vez por Jhonata em Qui Fev 28, 2013 00:58, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Integral

Mensagempor Jhonata » Qui Fev 28, 2013 00:55

Jhonata escreveu:
barbara-rabello escreveu:Olá!

Eu não poderia resolver a integral por substituição simples?
Por exemplo: w = v² +8
dw = 2v.

Eu tinha tentado assim, só fiquei na dúvida quanto ao sinal, pois o 2v é negativo.



Olá bárbara.
O exercício até induz a fazer isso mesmo, mas não é tão simples quanto parece. hehe.
Mas se você olhar atentamente, o "-2" é uma parcela, não um fator de multiplicação, então, particularmente, não dá pra fazer por substituição simples e acho que a forma que mostrei é a correta.
Conseguiu resolver o restante do que deixei? Espero que sim. Se você tiver o gabarito da questão, poste aí pra ver se conseguimos chegar à uma conclusão. Ou já posso postar minha resposta direto de onde parei.

Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Integral

Mensagempor barbara-rabello » Qui Fev 28, 2013 14:07

Obrigada pelo esclarecimento!

Nem tinha pensado nisso. Já fui tentando logo pelo jeito mais fácil.
A resposta é \frac{1}{2} ln2.
Mas não cheguei nesse resultado. Devo estar fazendo alguma coisa errada.
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59