• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor mih123 » Seg Jan 28, 2013 11:18

\int{3}^{x}cos(x)dx

Nao sei por onde comecar! :/
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Integral]

Mensagempor Molina » Seg Jan 28, 2013 14:15

Boa tarde, Mih.

mih123 escreveu:\int{3}^{x}cos(x)dx

Nao sei por onde comecar! :/


Integral por partes, não sai? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [Integral]

Mensagempor e8group » Seg Jan 28, 2013 22:12

Integral por partes é uma boa sugestão .Podemos associar por exemplo , f(x) = 3^x = e^{x\cdot ln(3) } e D_x g(x) = cos(x) .

Como (f\cdot g)'(x)   =  f' \cdot g (x) + (g' \cdot f)(x)

Então ,

(f \cdot g' )(x) =  (f\cdot g)'(x)  - f' \cdot g (x)

Portanto ,

\int (f\cdot g')(x) = (f\cdot g)(x) - \int (f'\cdot g)(x)

Sendo g'(x) = cos(x) e f(x) = 3^x = e^{x\cdot ln(3) } implica g(x) = sin(x) e f'(x) = ln(3) e^x .

substituindo fica ,

\int 3^x cos(x) dx =  3^x sin(x)  -  ln(3) \int e^x sin(x)  dx

Mas ,

\int e^x sin(x)  dx   = \int (f \cdot g'' ) (x) dx que pela regra da cadeia ,

( f\cdot g')' (x)  =  f'\cdot g'  +  (f\cdot g'' )(x)  \implies   \int (f\cdot g'' )(x)  =  ( f\cdot g') (x)  -  \int f'\cdot g' (x) dx .

Prossegue-se que , \int (f\cdot g'' )(x) = \int 3^x sin(x)  dx  =  3^x cos(x)  - ln(3) \int 3^x cos(x) dx

Fazendo \int 3^x cos(x) dx = I ,

obtemos :

\begin{cases}  I =   3^x sin(x)  -  ln(3) \int e^x sin(x)  dx \\ \\  \int 3^x sin(x)  dx  =  3^x cos(x)  - ln(3) I \end{cases}

Comparando as duas expressões ,teremos :

I = 3^x sin(x) - ln(3)[3^xcos(x) - ln(3)I] \implies  I(1 + ln^2(3)) = 3^x[sin(x) + ln(3)3^xcos(x)]

Logo ,

I = \frac{3^x[sin(x)+ln(3)cos(x)]}{1+ln^2(3)}  +c

É isto .( Espero que não errei )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: