• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite para o infinito

Limite para o infinito

Mensagempor menino de ouro » Qua Jan 23, 2013 00:03

pessoal ,
nessa questão, como desenrolar as contas , não sei coma analisar?

\lim_{x\rightarrow \infty}\frac{\sqrt[]{9x^2+x}}{x+8}=3

por que da 3?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Limite para o infinito

Mensagempor young_jedi » Qua Jan 23, 2013 11:30

\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+x}}{x+8}

\lim_{x\rightarrow\infty}\frac{\sqrt{9x^2+\frac{x^2}{x}}}{x+\frac{8x}{x}}

\lim_{x\rightarrow\infty}\frac{\sqrt{x^2\left(9+\frac{1}{x}\right)}}{x\left(1+\frac{8}{x}\right)}

\lim_{x\rightarrow\infty}\frac{x.\sqrt{\left(9+\frac{1}{x}\right)}}{x\left(1+\frac{8}{x}\right)}

\lim_{x\rightarrow\infty}\frac{\sqrt{\left(9+\frac{1}{x}\right)}}{\left(1+\frac{8}{x}\right)}

quando x tende para infinito os dois termos tende para zero portanto

\lim_{x\rightarrow\infty}\frac{\sqrt{\left(9+\cancel{\frac{1}{x}}^0\right)}}{\left(1+\cancel{\frac{8}{x}}^0\right)}=\sqrt{9}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite para o infinito

Mensagempor menino de ouro » Qua Jan 23, 2013 12:12

no x^2 , dentro da raiz quando passa multiplicando , me parece que ta faltando um x?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Limite para o infinito

Mensagempor young_jedi » Qua Jan 23, 2013 14:52

conferi e não encontrei nenhume erro, acho que não entendi sua duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite para o infinito

Mensagempor menino de ouro » Qua Jan 23, 2013 15:52

na terceira para quarta etapa da resolução,

tem -se x^2 , você colocou um x para fora da raiz quadrada , multiplicando toda raiz , no caso onde foi parar o outro x
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Limite para o infinito

Mensagempor e8group » Qua Jan 23, 2013 17:15

Basta notar que devido a propriedade (a \cdot b)^n  =  a^n \cdot b^n fazendo a  = x^2 , b = 9+1/x e n = 1/2 . Em consequência disto ,
\sqrt{x^2(9+1/x)} = \left[x^2(9+1/x)\right]^{1/2} =  (x^2)^{1/2} \cdot (9+1/x)^{1/2}  = \sqrt{x^2} \cdot  \sqrt{9+1/x}   = x \cdot  \sqrt{9+1/x} (x \geq 0 )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}