![\int \frac{1}{\sqrt[3]{x} (\sqrt[3]{x} +1)} \int \frac{1}{\sqrt[3]{x} (\sqrt[3]{x} +1)}](/latexrender/pictures/5eb30feadef59a7cd6ab40743516fbfa.png)
Bom, meu professor nos explicou de um modo que eu teria que fazer o mmc com os denominadores da função , que neste caso seria 3 , logo x= z³
então

aí divido
3z² / z² + z = 3 , com um resto= -3z

daí na segunda integral dessa última, faço por frações parciais , né?
o estranho é que se faço por frações parciais, fiz (A/z) + (B/z+1)
onde achei A= 1 e B=-1, mas a integral fica -3

que resolvendo, resulta em -3 ln
![\left|\sqrt[3]{x} \right| \left|\sqrt[3]{x} \right|](/latexrender/pictures/1f3eed8fe0e0843f72a00d0232af61fe.png)
![\left|\sqrt[3]{x} +1 \right| \left|\sqrt[3]{x} +1 \right|](/latexrender/pictures/67e4e83319498a5c142a733cc57cbe0b.png)
Só que somando com a integral do começo ( 3dz ) que me resultava em 3z+c = 3
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
o resultado final seria :
3
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
![\left|\sqrt[3]{x} \right| \left|\sqrt[3]{x} \right|](/latexrender/pictures/1f3eed8fe0e0843f72a00d0232af61fe.png)
![\left|\sqrt[3]{x} +1 \right| \left|\sqrt[3]{x} +1 \right|](/latexrender/pictures/67e4e83319498a5c142a733cc57cbe0b.png)
Ou não??
o Resultado do meu professor e do wolfram foi: 3
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
![\left|\sqrt[3]{x} +1 \right| \left|\sqrt[3]{x} +1 \right|](/latexrender/pictures/67e4e83319498a5c142a733cc57cbe0b.png)