• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DEFINIDA] logaritmo natural

[INTEGRAL DEFINIDA] logaritmo natural

Mensagempor fabriel » Qua Jan 16, 2013 16:55

E ai Pessoal.. então estou em duvida no resultado que eu obtive, se esta correto ou não.
Então é dado esse exercício: A função ln : (0, +?) ?? R é de?nida por:

ln(x)=\int_{1}^{x}\frac{1}{t}dt

ln(x) é chamado logaritmo natural de x. Usando a definição acima determine: \frac{d}{dx}\left[ln(x) \right]


Então cheguei nisso:
\frac{d}{dx}\left[ln(x) \right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t}dt \right]=\frac{d}{dx}\left[ln(x) \right]-\frac{d}{dx}\left[ln(1) \right]= \frac{d}{dx}\left[ln(x) \right]=\frac{1}{x}

MAs isso esta certo?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEFINIDA] logaritmo natural

Mensagempor Cleyson007 » Qua Jan 16, 2013 17:24

Imagem
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.