• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE]

[LIMITE]

Mensagempor FERNANDA_03 » Sáb Jan 05, 2013 22:21

Não sei como faço para calcular o limite abaixo. Podem me ajudar?

\lim_{x\rightarrow 2}   x^3-5x^2+8x-4/x^4-5x-6
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Dom Jan 06, 2013 00:16

Boa noite .

Vamos trabalhar no numerador .

A seguir vamos utilizar algumas propriedades ,dentre elas comutatividade,distributividade, e do elemento neutro da soma .

Ressaltando que , (sendo a,b,c números reais )

a + b   = b +a  = (a+b) + 0   = (a+b) + a + (-a)  = (b+a)  + b + (-b)  = (a+b )  + (b-a) + (-b +a )  ,  (a+b)c = ac + bc = ca + cb .
Então ,

x^3 -5x^2 + 8x - 4   =   +x^3 +(-4x^2 -2x^2 + x^2) + (4x +4x) - (2+2)

x^3 -5x^2 + 8x - 4  = ( x^3 - 2x^2) + (-2x^2 + 4x) + (-2x^2 +4x) +  x^2 - 4

x^3 -5x^2 + 8x - 4  = x^2(x-2) - 4x(x-2)  + (x-2)(x+2)

x^3 -5x^2 + 8x - 4  = (x-2)[x^2 - 4x + x + 2]

Quanto o denominador pode dividir ele por x - 2 ou fazer o mesmo método acima .Deixo como exercício para você .

Feito isto você , poderá simplificar o termo x- 2 que aparecerá no númerador e no denominador . Note que isto só é possível pois x - 2 \neq 0 para x \to 2 .

OBS.: Evite escrever desta forma ,recomendo que utilize os parênteses ( ) . Perceba que (a+b)/c = a/c + b/c .Já a+b/c , fica subtendido-se que é b/c + a . A segunda opção seria utilizar o comando \frac{a+b}{c} cujo resultado é \frac{a+b}{c}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE]

Mensagempor FERNANDA_03 » Dom Jan 06, 2013 00:25

Obrigada!
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}