por rodrigonapoleao » Qui Dez 27, 2012 21:04
como calculo a primitiva da seguinte funçao
![f(x)=\frac{{x}^{3}}{\sqrt[]{2-{x}^{2}}} f(x)=\frac{{x}^{3}}{\sqrt[]{2-{x}^{2}}}](/latexrender/pictures/9f430f37b0aaab0a6f8061c90ec0a13c.png)
utilizando o metodo de substituiçao?
-
rodrigonapoleao
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Nov 19, 2012 14:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por marinalcd » Sex Dez 28, 2012 19:09
Bom, essa integral é bem simples de se resolver, embora não pareça:
Basta você utilizar um truque: "abrir" o

.
Então:

=


e

Segue que:

e

E assim, após essas substituições, basta calcular a integral.
Tente fazer e qualquer coisa pergunte de novo.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por DanielFerreira » Sex Dez 28, 2012 21:29
Boa! Marina.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por rodrigonapoleao » Sáb Dez 29, 2012 12:43
assim ficará
![\frac{1}{2}\int_{}^{}du.\frac{1}{\sqrt[]{u}}(2u).du = \frac{1}{2}\int_{}^{}du.\frac{1}{\sqrt[]{u}}(2-u).du = \frac{1}{2}ln\left|\sqrt[]{u} \right|.\int_{}^{}du(2-u).du \frac{1}{2}\int_{}^{}du.\frac{1}{\sqrt[]{u}}(2u).du = \frac{1}{2}\int_{}^{}du.\frac{1}{\sqrt[]{u}}(2-u).du = \frac{1}{2}ln\left|\sqrt[]{u} \right|.\int_{}^{}du(2-u).du](/latexrender/pictures/6fe7fc603096652d513ad6eecc91d842.png)
?
-
rodrigonapoleao
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Nov 19, 2012 14:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por e8group » Dom Dez 30, 2012 13:32
Bom tarde , antes de tudo recomendo notar que :
![x^3 = -x (-x^2) = -x(-x^2 + (-2)+2)) = -x(2 - x^2 -2) = \\
\quad = \quad-x([\sqrt{2-x^2}]^2 - 2) = -x(\sqrt{2-x^2}\cdot \sqrt{2-x^2} - 2) = \\
\quad = \quad -[\sqrt{2-x^2}\cdot\sqrt{2-x^2}]\cdot x + 2x x^3 = -x (-x^2) = -x(-x^2 + (-2)+2)) = -x(2 - x^2 -2) = \\
\quad = \quad-x([\sqrt{2-x^2}]^2 - 2) = -x(\sqrt{2-x^2}\cdot \sqrt{2-x^2} - 2) = \\
\quad = \quad -[\sqrt{2-x^2}\cdot\sqrt{2-x^2}]\cdot x + 2x](/latexrender/pictures/56831338490920214242554ab50af9a4.png)
.
OBS1.:

.Elemento neutro da soma .
Prosseguindo ,
OBS2.:

.Elemento neutro da multiplicação
Da última passagem ,resume-se ao próximo passo .Lembre-se ,"integral da soma é a soma das integrais " ...

.
Como disse a
marinalcd , temos :

.
Basta fazer as susbstituições .
Segue então que ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- primitivação por substituiçao
por rodrigonapoleao » Seg Dez 17, 2012 20:39
- 5 Respostas
- 2715 Exibições
- Última mensagem por e8group

Ter Dez 18, 2012 21:58
Cálculo: Limites, Derivadas e Integrais
-
- PRIMITIVAÇÃO
por rodrigonapoleao » Dom Dez 16, 2012 16:49
- 3 Respostas
- 1536 Exibições
- Última mensagem por e8group

Seg Dez 17, 2012 07:26
Cálculo: Limites, Derivadas e Integrais
-
- primitivaçao de funçoes racionais
por rodrigonapoleao » Ter Dez 18, 2012 19:16
- 1 Respostas
- 1324 Exibições
- Última mensagem por e8group

Qua Dez 19, 2012 06:33
Cálculo: Limites, Derivadas e Integrais
-
- Substituição
por LuY12 » Sáb Fev 28, 2009 16:20
- 1 Respostas
- 2042 Exibições
- Última mensagem por Adriano Tavares

Qua Mar 09, 2011 02:37
Cálculo: Limites, Derivadas e Integrais
-
- elasticidade de substituição
por jmario » Ter Mai 25, 2010 10:00
- 1 Respostas
- 2234 Exibições
- Última mensagem por daniellguitar

Sex Jun 04, 2010 00:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.