por MrJuniorFerr » Ter Dez 18, 2012 11:14
Como resolver a seguinte integral:

Tentei por diversas formas sem sucesso.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Ter Dez 18, 2012 17:53
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MrJuniorFerr » Ter Dez 18, 2012 18:42
Para usar substituição trigonométrica, o denominador não deveria estar dentro de uma raiz quadrada? o.O
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Qua Dez 19, 2012 10:59
não necessariamente
o importante é voce respeitar as substituições que se faz
voce pode fazer qualquer tipo de substituição de variaveis, desde que em suas substituição não ocorram indeterminações, do tipo divisões por 0.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo: Limites, Derivadas e Integrais] Como resolver?
por IlgssonBraga » Seg Jan 20, 2014 16:40
- 1 Respostas
- 2022 Exibições
- Última mensagem por IlgssonBraga

Seg Jan 20, 2014 17:02
Cálculo: Limites, Derivadas e Integrais
-
- Integrais, resolver.
por Tixa11 » Seg Nov 12, 2012 20:36
- 3 Respostas
- 1912 Exibições
- Última mensagem por Tixa11

Sáb Jan 12, 2013 22:51
Funções
-
- [Integrais] Quebrando cabeça para resolver uma integral
por MrJuniorFerr » Dom Dez 16, 2012 16:20
- 3 Respostas
- 2456 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 18:59
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver
por thyssa » Ter Abr 19, 2011 22:06
- 1 Respostas
- 2959 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 19, 2011 23:31
Progressões
-
- Como Resolver.
por 380625 » Dom Set 11, 2011 14:36
- 1 Respostas
- 1902 Exibições
- Última mensagem por MarceloFantini

Dom Set 11, 2011 19:40
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.