por Jhenrique » Seg Dez 17, 2012 13:04
É muito comum relacionarmos a derivada duma função com a reta tangente, aliás, no cálculo existe até um capítulo específico de estudo: "aproximação linear".
Mas porque tanta enfatização só para a derivada como reta tangente? E a derivada de 2ª ordem, ela existe! E é uma parábola tangente. Eu também posso tirar partido da parábola tangente. Porque esse assunto é ignorado?
Grato!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema com tangentes
por davi_11 » Ter Abr 06, 2010 16:56
- 2 Respostas
- 1652 Exibições
- Última mensagem por davi_11

Qui Abr 08, 2010 17:25
Trigonometria
-
- retas tangentes
por kvothe » Sex Mai 06, 2011 17:48
- 1 Respostas
- 1843 Exibições
- Última mensagem por LuizAquino

Sex Mai 06, 2011 18:49
Cálculo: Limites, Derivadas e Integrais
-
- Tangentes na circunferência
por Lana Brasil » Ter Abr 30, 2013 14:08
- 1 Respostas
- 862 Exibições
- Última mensagem por young_jedi

Ter Abr 30, 2013 20:46
Geometria Plana
-
- Funções tangentes entre si?
por michajunco » Seg Jun 13, 2011 00:20
- 2 Respostas
- 1509 Exibições
- Última mensagem por michajunco

Seg Jun 13, 2011 14:29
Funções
-
- Retas tangentes à parabola
por Filipe Ricardo Rosa » Dom Jul 03, 2011 19:26
- 8 Respostas
- 9151 Exibições
- Última mensagem por LuizAquino

Qua Jul 06, 2011 10:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.