• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral dupla

integral dupla

Mensagempor ricardosanto » Seg Dez 10, 2012 23:19

calcule a integral \int_{}^{}\int_{}^{} F(x,y)dydx conhecendo a função abaixo e os domínios de variação.
F(x,y)=xy+3y
0\leq x \leq1  
 
x\leq y \leq2x

desejo ver o desenvolvimento dessa integral, pois não estou conseguindo ter um bom entendimento da mesma.
Obrigado
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: integral dupla

Mensagempor young_jedi » Ter Dez 11, 2012 11:28

substituindo

\int_{0}^{1}\int_{x}^{2x}(xy+3y)dydx

primeiro realizando a integração em y

\int_{0}^{1}\left(x\frac{y^2}{2}+3\frac{y^2}{2}\right)\Big|_{x}^{2x}dx

aplicando os limites de integração

\int_{0}^{1}\left(x\frac{(2x)^2}{2}+3\frac{(2x)^2}{2}\right)-\left(x\frac{x^2}{2}+3\frac{x^2}{2}\right)dx

\int_{0}^{1}\left(\frac{3x^3}{2}+\frac{9x^2}{2}\right)dx

\left(\frac{3x^4}{8}+\frac{3x^3}{2}\right)\Big|^{1}_{0}

aplicando os limites

\frac{3}{8}+\frac{3}{2}\right)=\frac{15}{8}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.