por inkz » Dom Nov 25, 2012 15:32
lim(x,y)->(0,0) x² / (sqrt(x² + y²))
tentei resolver usando teorema do confronto, mas não deu muito certo..
fiz que 0 < ou = | x² / (sqrt(x² + y²)) | = x² / (sqrt(x² + y²)) < ou igual (não consegui essa parte do confronto)
me ajudem?

obrigado!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Dom Nov 25, 2012 16:56
Pensei em fazer assim :
Seja

, de modo que

.
Assim,

. Multiplicando toda desigualdade por

temos que ,

.
Visto que ,
Temos que ,

.
Editado , erro com código .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Nov 25, 2012 17:48
Ficou boa a resposta não , vou tentar arrumar um pouco .
Absurdo assumir que

.Tome por exemplo

e

.
Vamos supor que existe um

, para

em uma vizinhança do zero , de forma que

seja estritamente maior que zero e menor que

.
Isto é ,

que implica

.Multiplicando toda inequação por

temos ,

.
Uma vez que ,
Implicará que

.
O que acha ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por inkz » Dom Nov 25, 2012 18:59
olá, agradeço a resposta!!
de fato, não podemos assumir que a sua h(x,y) seja limitada entre 0 e 1.
mas agora me veio a idéia de usar aquele teorema que diz que
seja lim x->h f(x) = 0 e g(x) limitada, então
lim x->h [f(x) * g(x)] = 0
porém quando uma função é limitada?
digo.. podemos dizer que a sua h(x,y) (do primeiro post seu) é <= 0, certo?
isso caracteriza uma função limitada? já que sua imagem é [0, +oo[ ?
quanto a sua segunda resolução, gostei do método, mas sinceramente não entendi muito bem ):
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Dom Nov 25, 2012 19:59
Eu definir

apenas para

em uma vizinhança do zero , isto é quando

.
Vamos usar a Idéias intuitiva do limite só para compreender o comportamento de

.
Façamos ,

. Vamos pegar valores testes , como por exemplo :

.

.
É fácil ver que ,

. Pela nossa hipótese ,existe um

quando

.
Dá última inequação , multiplicando por

.

.
Vamos novamente parti da idéia intuitiva de limite :
Vamos tomar

novamente . Vamos , ter :

.
Pela nossa hipótese ,

. Façamos então ,

, é obvio que

.
Agora faça o estudo com

.
Acredito que esta solução seja valida sim .Isso por que

e

. Vamos ver que os demais usuarios do ajuda matmática acham .
OBS .: Na próxima vez utilize o editor de fórmulas do fórum .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por inkz » Dom Nov 25, 2012 22:12
agora ficou mais claro, e pude entender!!
parece razoável que seja realmente uma solução válida.
mas será que a que sugeri, de usar o teo de função limitada daria certo?
obrigado!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Seg Nov 26, 2012 11:44
inkz escreveu:agora ficou mais claro, e pude entender!!
parece razoável que seja realmente uma solução válida.
mas será que a que sugeri, de usar o teo de função limitada daria certo?
obrigado!!
inkz escreveu:
mas será que a que sugeri, de usar o teo de função limitada daria certo?
Não posso afirmar isto ,eu aconselho você conversar com seu professor sobre isto . Eu já deparei com exercícios como este , só que uma variável . Realmente para estes casos eu acredito que o
Teorema do confronto seja melhor e mais aceito que o seu método proposto . Através deste teorema ,por exemplo ,podemos mostrar que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES] Função de duas variáveis
por Sohrab » Ter Abr 23, 2013 03:18
- 7 Respostas
- 6466 Exibições
- Última mensagem por brunno10

Qua Mai 01, 2013 00:28
Cálculo: Limites, Derivadas e Integrais
-
- Limites duas variaveis
por Razoli » Qui Jul 03, 2014 23:22
- 2 Respostas
- 2391 Exibições
- Última mensagem por Razoli

Qui Jul 03, 2014 23:41
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Equação de limite de duas variáveis reais
por Bianca_R » Dom Nov 04, 2012 21:45
- 1 Respostas
- 2008 Exibições
- Última mensagem por e8group

Seg Nov 05, 2012 11:19
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] - LIMITES DE DUAS VARIAVEIS
por Jol » Ter Fev 26, 2013 19:33
- 1 Respostas
- 1871 Exibições
- Última mensagem por young_jedi

Qua Fev 27, 2013 18:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 5939 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.