• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Rolle

Teorema de Rolle

Mensagempor Mel92 » Sex Nov 23, 2012 23:57

Boa noite, estou com dificuldade no seguinte exercicio:

Verifique se a função satisfaz as três hipoteses do Teorema de Rolle sobre o intervalo dado. Então encontre todos os numeros c que satisfazem a conclusao do teorema.
f(x)=sen 2\pi x no intervalo [-1,1]


Segundo a resolução do livro, a função é continua, ou seja, f(-1)=f(1), porém fazendo f(-1) não ficaria: f(-1)= - sen 2\pi x ? e travei na tentativa de resolver o f '(c), que seria:

f'(x)= cos 2\pi x portanto pra calcular o c : f'(c)= cos 2\pi c --- cos 2\pi c = 0, não sei como sair daí! A resposta do problema é : \frac{1}{4} ; \frac{3}{4}

obrigada.
Mel92
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Nov 23, 2012 23:29
Formação Escolar: GRADUAÇÃO
Área/Curso: meteorologia
Andamento: cursando

Re: Teorema de Rolle

Mensagempor e8group » Sáb Nov 24, 2012 00:18

Pelo Teorema de Rolle , se f é contínua em [a,b] e diferenciável em (a,b) . Supondo que f(a) = f(b) teremos um c \in (a,b) tal que f'(c) = 0 .

Veja que f é definida em [-1,1] e f(-1) = f(1) =  0 . Deste modo temos que , existe um c tal que f'(c) =  0 .

f'(x)  =   (sin(2\pi x) ) '  =  sin'(2\pi x) \cdot (2\pi x)'  = 2\pi cos(\2\pi x) . Daí ,

f'(c)  =  2\pi cos(2\pi c) =  0 .Visto que , cos(\theta) = 0 se \theta = \begin{cases}  \frac{\pi}{2} + 2k\pi\\  \frac{3\pi}{2} + 2k\pi \end{cases}    , k \in \mathbb{Z} . Temos que ,

c =   \begin{cases}    \frac{1}{4}  \\  \frac{3}{4}  \end{cases} . (Verifique ! )

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Teorema de Rolle

Mensagempor Mel92 » Sáb Nov 24, 2012 00:36

Não entendi a ultima linha, \frac{\pi}{2} e \frac{3 \pi}{2} + 2 k \pi
A resposta é essa mesmo, obrigada.
Mel92
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Nov 23, 2012 23:29
Formação Escolar: GRADUAÇÃO
Área/Curso: meteorologia
Andamento: cursando

Re: Teorema de Rolle

Mensagempor MarceloFantini » Sáb Nov 24, 2012 00:55

Lembre-se que a função cosseno é periódica, e portanto terá valores iguais a cada ciclo. Estes ciclos são apenas voltas no sentido horário ou anti-horário, que pode ser escrito como k 2 \pi, onde k \in \mathbb{Z} é o número inteiro que representa o número de voltas.

Apesar da afirmação do Santhiago com relação a isso estar certa, ela não é válida neste exercício, pois a função está definida para [-1,1]. Ou seja, bastava apenas escrever \frac{\pi}{2} e \frac{3 \pi}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Teorema de Rolle

Mensagempor e8group » Sáb Nov 24, 2012 09:03

Tem razão , estar certo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Teorema de Rolle

Mensagempor Mel92 » Sáb Nov 24, 2012 18:44

Muito obrigada
Mel92
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Nov 23, 2012 23:29
Formação Escolar: GRADUAÇÃO
Área/Curso: meteorologia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.