• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CURVAS] CÁLC II - Trajetórias e Parametrização

[CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor inkz » Ter Nov 20, 2012 01:12

pessoal, estou resolvendo provas antigas para me preparar para a p1 de cálculo 2, porém, não tenho as respostas. podem me ajudar, só conferindo se o raciocínio está correto?

2) UMA PARTICULA MOVE-SE NO SENTIDO HORÁRIO SOBRE UM CÍRCULO DE CENTRO EM (1,1) E RAIO 2, COM VELOCIDADE ESCALAR CONSTANTE IGUAL A 6. DETERMINE UMA FUNÇÃO CUJA TRAJETÓRIA DESCREVE O MOVIMENTO DA PARTÍCULA.

minha tentativa:
parametrização de um círculo com centro em (0,0) e raio 1:
w(t) = (cost, sent)

parametrização de um círculo com centro em (0,0) e raio 2:
w(t) = (2cost, 2sent)

parametrização de um círculo com centro em (1,1) e raio 2:
w(t) = (1+2cost, 1+2sent)

parametrização de um círculo com centro em (1,1) e raio 2 e que descreva um movimento horário:
w(t) = (1+2sent,1+2cost)

e para mim seria essa a resposta..

mas eu nem utilizei o dado que foi dado, de que a velocidade escalar é constante e igual a 6.
sei que a derivada da trajetória é a velocidade instantânea, e que a norma dessa derivada, || v || é a velocidade escalar. mas como eu deveria ter usado esse dado? tá tudo errado ou o que? me ajudem, por favor :-D

será que seria:

w(t) = (1+2sen(6t),1+2cos(6t))??

como vocês resolveriam ele? :p
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor MarceloFantini » Ter Nov 20, 2012 01:28

Assuma que o parâmetro da curva será kt, assim teremos w(t) = (1 + 2 \sin (kt), 1 + 2 \cos (kt)).

Na sua parametrização ela começa em (1,3), ou seja, no topo da circunferência. Isto não faz tanta diferença mas é interessante perceber.

Derivando temos

w'(t) = (2k \cos (kt), -2k \sin (kt) ).

Calculando o módulo e igualando a 6 segue

4k^2 = 6^2,

assim k = 3. Existe uma resposta negativa para k, mas isto significaria reverter a orientação novamente, o que não queremos, portanto descartei-a.

Finalmente, a parametrização pedida é

w(t) = (1 + 2 \sin (3t), 1 + 2 \cos (3t)).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor inkz » Ter Nov 20, 2012 02:01

MarceloFantini escreveu:Assuma que o parâmetro da curva será kt, assim teremos w(t) = (1 + 2 \sin (kt), 1 + 2 \cos (kt)).


Caro MarceloFantini, não entendi o porque do parâmetro ser kt, e não t..
Digo, entendi tudo que foi feito ali, mas o que te fez pensar em usar kt?

Obrigado, novamente!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor MarceloFantini » Ter Nov 20, 2012 02:15

A idéia por trás de usar kt ao invés de t foi que ao derivar poderíamos ter uma constante a mais multiplicando o seno e o cosseno de tal forma que a velocidade se alterasse.

De forma mais genérica, o que determina a velocidade de circunferência é o coeficiente do parâmetro.

Tomando C(t) = (\cos (kt), \sin (kt)), temos que C'(t) = (-k \sin (kt), k \cos (kt)) e assim |C'(t)| = \sqrt{k^2} = |k|.

Da maneira como você parametrizou está assumido implicitamente que a velocidade da circunferência, a menos do raio, é 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor inkz » Ter Nov 20, 2012 02:29

oh, entendi.. então eu deveria possuir o prévio conhecimento de que o que determina a velocidade da circunf é o coef. do parâmetro, certo? ou havia algum jeito de se chegar nisso, mesmo sem conhecer isso?

agradeço novamente, pelas respostas e pela ajuda!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor MarceloFantini » Ter Nov 20, 2012 09:58

Não estou conseguindo pensar em outra maneira de resolver sem usar isso. Pode existir, eu apenas não sei. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] CÁLC II - Trajetórias e Parametrização

Mensagempor inkz » Ter Nov 20, 2012 11:53

bom, se MarceloFantini não sabe outro jeito, posso afirmar que não existe outro modo de se resolver hahahah :lol:

tudo bem então, muito obrigado pela ajuda amigo!!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.