• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CURVAS] Esboço da trajetória

[CURVAS] Esboço da trajetória

Mensagempor inkz » Ter Nov 20, 2012 01:14

oi amigos, estou resolvendo provas antigas para me preparar para a p1 de cálculo 2, porém, não tenho as respostas. podem me ajudar, só conferindo se o raciocínio está correto? thx :D

1) Esboce a trajetória da curva gama(t) = ( e^t, e^(2t) )

como fiz:

x=e^t
y=e^2t

y=(e^t)^2 = x^2

então, a trajetória da curva gama(t) está contida na parábola y=x², porém apenas no primeiro quadrante, já que a imagem de gama(t) é maior ou igual a zero, para qualquer (t) pertencente ao seu domínio...

é isso mesmo?
valeeu =]
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] Esboço da trajetória

Mensagempor MarceloFantini » Ter Nov 20, 2012 01:37

Na verdade o que você quis dizer é que a imagem de e^t é maior que zero. Lembre-se que a exponencial nunca se anula e é sempre positiva.

Sua conclusão sobre estar contida na parábola está correta: ela estará contida na parábola mais precisamente com x \in (0, + \infty), ou seja, a parábola chega arbitrariamente próximo de zero, mas nunca é zero, e vai para infinito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] Esboço da trajetória

Mensagempor inkz » Ter Nov 20, 2012 01:52

ops, tem razão. no papel eu havia colocado corretamente. foi erro meu ao transpor para cá. muito obrigado pela resposta amigo!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.