• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL INDEFINIDA] Duvida no resultado

[INTEGRAL INDEFINIDA] Duvida no resultado

Mensagempor fabriel » Sex Nov 02, 2012 13:57

E ai pessoal, Resolvi essa integral mas estou com duvida no resultado, se é isso mesmo...Ve se eu errei nas contas ai...então é dada essa Integral:
\int_{}^{}\frac{{5x}^{2}+2}{{x}^{3}-{5x}^{2}+4x}dx

Posso escreve-la assim, para decompor as frações:
\int_{}^{}\frac{{5x}^{2}+2}{\left(x+1 \right)\left(x \right)\left(x-4 \right)}dx

Então decompondo as frações, vamos ter o seguinte:
\int_{}^{}\frac{A}{\left(x-1 \right)}+\frac{B}{\left(x \right)}+\frac{C}{\left(x-4 \right)}dx

Isso vai nos levar ao seguinte:
{5x}^{2}+2=A\left({x}^{2}-4x \right)+B\left({x}^{2}-5x+4 \right)+C\left({x}^{2}-x \right)

Aí teremos o Sistema:
A+B+C=5

-4A-5B-C=0

4B=2\Rightarrow B=\frac{1}{2}

Logo:A=-\frac{7}{3} e C=\frac{41}{6}
Teremos então:
\int_{}^{}\frac{A}{\left(x-1 \right)}+\frac{B}{\left(x \right)}+\frac{C}{\left(x-4 \right)}dx= \int_{}^{}\frac{-\frac{7}{3}}{\left(x-1 \right)}+\frac{\frac{1}{2}}{\left(x \right)}+\frac{\frac{41}{6}}{\left(x-4 \right)}dx

Calculando essa integral Vamos obter:
-\frac{7}{3}ln\left|x-1 \right|+\frac{1}{2}ln\left|x \right|+\frac{41}{6}ln\left|x-4 \right|+c

MAS AGORA EU POSSO SIMPLIFICAR ESSE RESULTADO?? SE SIM ENTÃO COMO QUE VAI FICAR??
(Um ótimo feriado a todos!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL INDEFINIDA] Duvida no resultado

Mensagempor fraol » Seg Nov 19, 2012 22:00

Olá, boa noite.

A resolução está certa.

Há um lapso de digitação do sinal na 1a. fatoração do denominador mas está ok logo abaixo.

Quanto à simplificar, não há muito o que se possa fazer a não ser talvez usar o MMC de 3, 2 e 6 e colocá-lo em evidência na expressão final.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}