• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Cálculo da área

[Integrais] Cálculo da área

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 18:43

Estou com dúvidas no seguinte problema:

Calcule a área da região situada entre as curvas y=x^3, o eixo das abscissas e as retas x=-2 e x=2. Gabarito: 8u.a.

Tentei de duas formas mas sem sucesso:

1ª forma:
\int_{-\-2}^2 x^3dx = 0

2ª forma:
\int_{0}^2 x^3dx + \int_{-2}^0 x^3dx = 4+(-4)=0

Ambos deram 0.

Como calcular a área neste problema?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Cálculo da área

Mensagempor young_jedi » Dom Nov 11, 2012 18:51

voce tem que utilizar o segunda forma que voce fez ai, mais tem que levar em consideração que a segunda integral vai resultar em um valor negativo, como voce esta calculando uma area então voce deve tomar seu modulo

A=\left|\int_{0}^{2}x^3dx\right|+\left|\int_{-2}^{0}x^3dx\right|
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Cálculo da área

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 19:09

Entendi Jedi, obrigado.
As retas x=-2 e x=2 são verticais?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Cálculo da área

Mensagempor young_jedi » Dom Nov 11, 2012 20:41

Sim elas são verticais, paralelas ao eixo y
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.