• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequências] ajuda na resolução

[Sequências] ajuda na resolução

Mensagempor Fabio Wanderley » Sex Nov 09, 2012 12:23

Olá!

Segue um exercício:

"A sequência \lim_{n\rightarrow+\infty}\left(\frac{n+3}{n+1} \right)^n converge? Caso afirmativo, qual o limite?"

Intuitivamente imagino que a sequência diverge. Mas não consigo calcular o limite (minha dificuldade é que uma função está elevada a n). Alguém pode me dar uma ideia. Estou no início de Cálculo II.

Obrigado!
Editado pela última vez por Fabio Wanderley em Sex Nov 09, 2012 15:28, em um total de 1 vez.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Sequências] ajuda na resolução

Mensagempor MarceloFantini » Sex Nov 09, 2012 14:04

Note que \frac{n+3}{n+1} = \frac{n+1 +2}{n+1} = 1 + \frac{2}{n+1}, daí

\lim_{n \to \infty} \left( \frac{n+3}{n+1} \right)^n = \lim_{n \to \infty} \left( 1 + \frac{2}{n+1} \right)^n = \lim_{n \to \infty} \left( 1 + \frac{2}{n+1} \right)^{n+1 -1}

= \frac{\lim_{n \to \infty} \left( 1 + \frac{2}{n+1} \right)^{n+1}}{\lim_{n \to \infty} \left( 1 + \frac{2}{n+1} \right)} = \frac{e^2}{1} = e^2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Sequências] ajuda na resolução

Mensagempor Fabio Wanderley » Sex Nov 09, 2012 15:27

Obrigado, Marcelo!

Eu desconhecia a forma de se pensar na sua primeira observação. Valeu demais!!!

Revisei também o assunto \lim_{x\rightarrow+\infty}\left(1+\frac{1}{x} \right)^x= e

Concluindo, ao contrário do que pensei, a sequência dada converge.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}