• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada]Erro de Aproximaçao

[derivada]Erro de Aproximaçao

Mensagempor TheKyabu » Qua Out 31, 2012 10:10

Nao consigo interpreta a questao

Seja A = {l}^{2}, l > 0

a) Calcule a diferencial.
b) Interprete geometricamente o erro que se comete na aproximação de \Delta A por dA. (Olhe para A = {l}^{2} como a fórmula para o cálculo da área de quadrado de lado L).

a)\frac{dA}{dl}=2l \rightarrow dA=2ldl

Estou com duvida na hora de encontra o erro quando \Delta A aproxima de dA,tpw usando a formula de \Delta A
eu chego em\Delta A=2l\Delta l+\Delta l^2

mais i ai q interpretaçao devo ter,por favor me ajudem nesse assunto de erro
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [derivada]Erro de Aproximaçao

Mensagempor LuizAquino » Qui Nov 01, 2012 16:37

TheKyabu escreveu:Nao consigo interpreta a questao

Seja A = {l}^{2}, l > 0

a) Calcule a diferencial.
b) Interprete geometricamente o erro que se comete na aproximação de \Delta A por dA. (Olhe para A = {l}^{2} como a fórmula para o cálculo da área de quadrado de lado L).

a)\frac{dA}{dl}=2l \rightarrow dA=2ldl

Estou com duvida na hora de encontra o erro quando \Delta A aproxima de dA,tpw usando a formula de \Delta A
eu chego em\Delta A=2l\Delta l+\Delta l^2

mais i ai q interpretaçao devo ter,por favor me ajudem nesse assunto de erro


Você já sabe que dA = 2l\,dl e que \Delta A = 2l\Delta l + \Delta l^2 . Você também sabe que por definição temos dl = \Delta l . Portanto, temos que \Delta A = 2l\,dl + dl^2 . Comparando então dA e \Delta A percebemos que a diferença entre eles (que será o erro de aproximação) é dl^2 (ou \Delta l^2, já que dl = \Delta l por definição) . Para entender esse erro geometricamente, analise a figura abaixo.

figura.png
figura.png (3.34 KiB) Exibido 2115 vezes


Agora responda:
1) Qual é a diferença entre a área do quadrado ABIH e ACEG? (Note que essa diferença representa geometricamente \Delta A .)
2) Qual é a soma das áreas dos dois retângulos BCDI e IFGH? (Note que essa soma representa geometricamente dA .)
3) Qual é a área do quadrado IDEF? (Note que essa área representa geometricamente a diferença entre dA e \Delta A .)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}