• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminações envolvendo infinito.

Indeterminações envolvendo infinito.

Mensagempor Sobreira » Ter Out 23, 2012 01:05

Pessoal,
Gostaria de saber se há mais indeterminações com o infinito (além destas abaixo)
E quais são??

\infty-\infty


\frac{\infty}{\infty}


\infty*0
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Indeterminações envolvendo infinito.

Mensagempor Fabio Wanderley » Ter Out 23, 2012 08:46

Bom dia,

Vou postar as indeterminações que estão no livro do Guidorizzi (p. 105, vol. 1, 5 ed)

+\infty-(+\infty)

-\infty-(-\infty)

0 \cdot \infty

\frac{\infty}{\infty}

\frac{0}{0}

1^\infty

0^0

\infty^0

Postei indeterminações envolvendo o zero e repeti algumas que vc já havia postado, mas de outra forma.

Até mais.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Indeterminações envolvendo infinito.

Mensagempor Sobreira » Ter Out 23, 2012 11:19

Obrigado.
Agora, alguém sabe me informar, matematicamente, porque \infty * 0 não é igual a 0???
Sei que \infty não é um número real mas pensando como um número real com módulo muito grande, não entendo porque é uma indeterminação.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Indeterminações envolvendo infinito.

Mensagempor MarceloFantini » Ter Out 23, 2012 12:00

É que você não pode pensar em \infty como um número real com módulo muito grande. Todas essas expressões não tem significado até que você decida o que entender por elas. Normalmente você irá defini-las de acordo com o contexto e o que for mais conveniente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}