• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda na interpretação de uma demonstração [integral]

Ajuda na interpretação de uma demonstração [integral]

Mensagempor Fabio Wanderley » Seg Out 22, 2012 18:10

Boa tarde!

Segue o exemplo:

Seja f uma função ímpar e contínua em [-r,r], r > 0. Mostre que:

\int_{-r}^{r}f(x)\ dx=0

Solução:

f ímpar <-> f(-x) = -f(x) em [-r,r].

Façamos a mudança de variável u = -x

u = - x; du = - dx
x = - r; u = r
x = r; u = - r

\int_{-r}^{r}f(x) \ dx = -\int_{-r}^{r}f(x) \ (-dx)=-\int_{r}^{-r}(-u) \ du=\int_{-r}^{r}f(-u) \ du

Como f(- u) = - f(u), resulta

\int_{-r}^{r}f(x) \ dx=-\int_{-r}^{r}f(u) \ du (<--- até aqui tudo bem)

mas, \int_{-r}^{r}f(u) \ du=\int_{-r}^{r}f(x) \ dx (veja observação acima), logo: (<--- não entendi isso)

\int_{-r}^{r}f(x) \ dx=-\int_{-r}^{r}f(x) \ dx

(...)

Guidorizzi, p. 322, vol. 1, 5 ed.

Estou entendo até chegar a linha que marquei. Depois não consigo entender como ele concluiu a igualdade... e como assim "veja observação acima"? Para mim ficou confuso.

Alguém pode me ajudar?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Ajuda na interpretação de uma demonstração [integral]

Mensagempor young_jedi » Seg Out 22, 2012 18:40

repare que as duas exprresões representam a mesma integral, apenas se utilizou outro simbolo para representar a variavel
poderia utilizar qualquer simbolo, note que;

\int_{-r}^{r}f(x)dx=\int_{-r}^{r}f(y)dy=\int_{-r}^{r}f(u)du=\int_{-r}^{r}f(s)ds=\int_{-r}^{r}f(\theta)d\theta

é apenas o simbolo da variavel que é diferente mais representam a mesma integral
por isso ele pode fazer a igualdade
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Ajuda na interpretação de uma demonstração [integral]

Mensagempor Fabio Wanderley » Seg Out 22, 2012 19:59

young_jedi escreveu:repare que as duas exprresões representam a mesma integral, apenas se utilizou outro simbolo para representar a variavel
poderia utilizar qualquer simbolo, note que;

\int_{-r}^{r}f(x)dx=\int_{-r}^{r}f(y)dy=\int_{-r}^{r}f(u)du=\int_{-r}^{r}f(s)ds=\int_{-r}^{r}f(\theta)d\theta

é apenas o simbolo da variavel que é diferente mais representam a mesma integral
por isso ele pode fazer a igualdade


young_jedi,

Mas se ele definiu que u = - x

e conclui que

\int_{-r}^{r}f(x) \ dx=-\int_{-r}^{r}f(u) \ du

como logo depois ele coloca que

\int_{-r}^{r}f(u) \ dx=\int_{-r}^{r}f(x) \ du

???

Não estou conseguindo enxergar como "sumiu" o sinal negativo de um lado da equação...

Agradeço desde já sua atenção!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Ajuda na interpretação de uma demonstração [integral]

Mensagempor young_jedi » Seg Out 22, 2012 21:31

a questão é que as duas igualdades são verdadeiras

a primeira igualdade ele tirou do fato da função ser impar e continua como voce demonstrou

\int_{-r}^{r}f(x)dx=-\int_{-r}^{r}f(u)du

a segunda ele tirou do fato de ser possivel fazer a substituição que eu desmonstrei

\int_{-r}^{r}f(x)dx=\int_{-r}^{r}f(u)du

sendo assim as duas igualdades são verdadeiras com isso então nos temos que

\int_{-r}^{r}f(x)dx=-\int_{-r}^{r}f(x)dx

mais isso só é possivel se

\int_{-r}^{r}f(x)dx=0

sendo assim demosntramos aquilo que se queria desde o inicio
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Ajuda na interpretação de uma demonstração [integral]

Mensagempor Fabio Wanderley » Seg Out 22, 2012 21:48

Obrigado, young_jedi!

Tinha dado um tempo pra essa questão e voltei agora para vê-la novamente... ficou melhor pra entender :lol:

Acho que vou usá-la numa apresentação...

abraço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59