
o Que eu fiz:
1) D = R - {0}
2)
![f'(x)= 2x-\frac{1}{{x}^{2}}\Rightarrow\frac{2{x}^{3}-1}{{x}^{2}}\Rightarrow 2{x}^{3}-1=0\Rightarrow x=\sqrt[3]{\frac{1}{2}} f'(x)= 2x-\frac{1}{{x}^{2}}\Rightarrow\frac{2{x}^{3}-1}{{x}^{2}}\Rightarrow 2{x}^{3}-1=0\Rightarrow x=\sqrt[3]{\frac{1}{2}}](/latexrender/pictures/bb5ab419de979e35beedb26dfa6f2a5a.png)
substitui o valor encontrado na f '(x) em f(x) para encontrar o Ponto Critico
![f(\sqrt[3]{\frac{1}{2}})= {\left(\sqrt[3]{\frac{1}{2}} \right)}^{2}+ \frac{1}{\sqrt[3]{\frac{1}{2}}} f(\sqrt[3]{\frac{1}{2}})= {\left(\sqrt[3]{\frac{1}{2}} \right)}^{2}+ \frac{1}{\sqrt[3]{\frac{1}{2}}}](/latexrender/pictures/9e0e5d4473abe6e5830356c596b47c66.png)
Mais nao consegui resolver mais, para dai estudar as regios de crescimento e decrescimento.

![f'(x)= 2x-\frac{1}{{x}^{2}}\Rightarrow\frac{2{x}^{3}-1}{{x}^{2}}\Rightarrow 2{x}^{3}-1=0\Rightarrow x=\sqrt[3]{\frac{1}{2}} f'(x)= 2x-\frac{1}{{x}^{2}}\Rightarrow\frac{2{x}^{3}-1}{{x}^{2}}\Rightarrow 2{x}^{3}-1=0\Rightarrow x=\sqrt[3]{\frac{1}{2}}](/latexrender/pictures/bb5ab419de979e35beedb26dfa6f2a5a.png)
![f(\sqrt[3]{\frac{1}{2}})= {\left(\sqrt[3]{\frac{1}{2}} \right)}^{2}+ \frac{1}{\sqrt[3]{\frac{1}{2}}} f(\sqrt[3]{\frac{1}{2}})= {\left(\sqrt[3]{\frac{1}{2}} \right)}^{2}+ \frac{1}{\sqrt[3]{\frac{1}{2}}}](/latexrender/pictures/9e0e5d4473abe6e5830356c596b47c66.png)

em
para encontrar o Ponto Critico"
ou valores de x que a
não existe.
, você vai encontrar um possível máx ou mín global.
encontrado ao resolver
, você apenas encontrará o valor da função correspondente a um máximo ou mínimo local.
e
. Eles serão, respectivamente, os valores onde a função é crescente e decrescente.
para determinar os pontos de inflexão. Os pontos onde
e
serão os intervalos onde a função é convexa e côncava, respectivamente.

, que é um possível valor máximo/mínimo local de f. 
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

.



