• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Reta Tangente

Reta Tangente

Mensagempor marinalcd » Sáb Out 13, 2012 16:40

Não estou conseguindo elaborar esta questão.
Usando a propriedade que o vetor gradiente de uma função é normal a um conjunto de nível, determine a equa¸cão da reta tangente à curva de interseção das superfícies
x² ? y² ? z² + 12 = 0 e 3x² + y² + z = 4 no ponto (1, 2,?3).
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Reta Tangente

Mensagempor young_jedi » Sáb Out 13, 2012 21:17

podemos dfinir

F(x,y,z)=x^2-y^2-z^2+12

e

F_2(x,y,z)=3x^2+y^2+z-4

calculando o gradiente das funções F F2, no ponto voce encontra os vetores normais as superficie no ponto, fazendo o produto vetorial deste dois vetores voce encontra um vetor que é normal aos vetores normais, sendo assim este vetor define a reta tangente.


\frac{\partial F(x,y,z)}{\partial x}\Bigg|_{(1,2,-3)}=2

\frac{\partial F(x,y,z)}{\partial y}\Bigg|_{(1,2,-3)}=-4

\frac{\partial F(x,y,z)}{\partial z}\Bigg|_{(1,2,-3)}=6

\overrightarrow{v}=(2,-4,6)

\frac{\partial F_2(x,y,z)}{\partial x}\Bigg|_{(1,2,-3)}=6

\frac{\partial F_2(x,y,z)}{\partial y}\Bigg|_{(1,2,-3)}=4

\frac{\partial F_2(x,y,z)}{\partial z}\Bigg|_{(1,2,-3)}=1

\overrightarrow{n}=(6,4,1)

fazendo

\overrightarrow{v}\times\overrightarrow{n}

encontra se o vetor que determina a reta tangente e com o ponto (1,2,-3), determina-se a reta.
Editado pela última vez por young_jedi em Sáb Out 13, 2012 22:00, em um total de 1 vez.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Reta Tangente

Mensagempor MarceloFantini » Sáb Out 13, 2012 21:50

Jedi, vide #1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Reta Tangente

Mensagempor young_jedi » Sáb Out 13, 2012 21:58

blz Marcelo, não tinha visto topico anterior ai.
valeu pelo toque
é que eu tinha um professor que escrevia assim, por causa da caligrafia dele, pra não causar confusão
dai eu me abtuei a escrever assim
mais pode deixar que eu mudo nos outros dois topicos.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Reta Tangente

Mensagempor marinalcd » Seg Out 15, 2012 20:21

Calculei o produto dos vetora e deu: (-28, 34, 32)

Aí eu usei a seguinte fórmula de eq. tangente:
z + 3 = -28 (x - 1) + 34(y - 2)

Entretanto não utilizei o 32 na fórmula, tem problema ou eu que usei a fórmula errada?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Reta Tangente

Mensagempor young_jedi » Seg Out 15, 2012 21:41

Na realidade voce utilizou a formula errada, repare que a equação que voce encontrou representa um plano e não uma reta.

voce tendo o vetor diretor da reta, uma representação da reta seria multiplicar este vetor por um valor t e somar com um ponto pertencente a reta ou seja:

t(-28,34,32)+(1,2,-3)

com isso tiramos as equações parametricas da reta

\begin{cases}x=-38.t+1\\y=34t+2\\z=32.t-3\end{cases}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Reta Tangente

Mensagempor marinalcd » Ter Out 16, 2012 18:43

Você tem toda razão, eu calculei como plano tangente e não como reta.
Muito obrigada pela ajuda!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: