• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite Trigonométrico] Não consigo começar a resolver

[Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Ter Out 09, 2012 19:30

O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?

Obrigado!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 14:43

ninguém? =/
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 14:47

Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor LuizAquino » Sex Out 12, 2012 15:32

dileivas escreveu:O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?


young_jedi escreveu:Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia


Para resolver esse exercício sem usar a Regra de L'Hospital, podemos proceder como indicado abaixo.

Fazendo a substituição de variáveis u = x + 2 , como temos x\to -2 sabemos que u \to 0 .

Ficamos então com:

\lim_{x\to -2} \frac{\textrm{tg}\, (\pi x)}{x+2} = \lim_{u\to 0} \frac{\textrm{tg}\, (\pi u - 2\pi)}{u}

Lembrando da definição de tangente, podemos ainda escrever que:

= \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u - 2\pi)}{u\cos (\pi u - 2\pi)}

Aplicando então a identidade trigonométrica \textrm{sen}\,(\alpha - \beta) = \textrm{sen}\,\alpha\cos \beta - \,\textrm{sen}\,\beta\cos \alpha , temos que:

= \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Agora tente concluir o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:12

Meu resultado ainda está errado... teria que dar \pi. O que estou errando?

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} *\lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)} = \lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)},

Tendo que \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} é um limite fundamental, que é igual a 1.

Como u\rightarrow 0 temos

\frac{1}{\cos (- 2\pi)} = 1

Não poderei aplicar o Teorema de L'hospital na prova 1 ainda, por isso tenho que resolver esse limite de outra forma...

Obrigado pela ajuda!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 17:20

voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:33

Apesar de não saber o que errei na resposta anterior, consegui chegar no resultado de outra forma:

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Se aplicarmos a identidade trigonométrica \cos\alpha \cos\beta + \sin\alpha \sin\beta, teremos

\lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{u\cos (\pi u)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} * \lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} é um limite fundamental, que é igual a 1, resta

\lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como u \rightarrow 0, temos

\frac{\pi}{\cos (0)} = \pi

Está correto!?

Obrigado! =D
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:36

young_jedi escreveu:voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.


Aaaah! Verdade! Só tinha esquecido do \pi! Daria certo também, foi falta de atenção...

Obrigado! Ajudaram muito!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: