• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstrar função hiperbólica

Demonstrar função hiperbólica

Mensagempor samra » Sáb Out 06, 2012 15:41

Como faço para provar a identidade hiperbólica abaixo?

senh\left(\frac{1}{2}x \right) = +-  \sqrt[]{\frac{cosh x-1}{2}}

Obg
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor MarceloFantini » Sáb Out 06, 2012 16:16

Você pode tentar usar a definição de seno hiperbólico: \sinh x = \frac{e^x - e^{-x}}{2}, daí \sinh^2 x = \left( \frac{e^x - e^{-x}}{2} \right)^2 e trabalhe pra chegar no quadrado da expressão dada.

Outra forma é você usar fórmulas de arco duplo de seno e cosseno hiperbólico (que eu não sei de cabeça), deve sair mais facilmente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor samra » Sáb Out 06, 2012 18:02

Olha o que eu fiz:

senh \left(\frac{1}{2}x \right) = +- \sqrt[]{\frac{coshx-1}{2}}

=

cosh (x) = cosh \left(\frac{x}{2} + \frac{x}{2} \right)

=

cosh \left(\frac{x}{2} \right). cosh \left(\frac{x}{2} \right) + senh \left(\frac{x}{2} \right). senh \left(\frac{x}{2} \right)

=

{cosh}^{2}\left(\frac{x}{2} \right) + {senh}^{2}\left(\frac{x}{2} \right)

sendo {cosh}^{2} \alpha - {senh}^{2}\alpha = 1 temos que:

\alpha = \frac{x}{2}

O que nos dá {cosh}^{2}\frac{x}{2} = 1 + {senh}^{2}\frac{x}{2}

O que eu devo fazer agora?

Obg, att.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Demonstrar função hiperbólica

Mensagempor MarceloFantini » Sáb Out 06, 2012 18:15

Se \cosh x = \cosh^2 \frac{x}{2} = 1 + \sinh^2 \frac{x}{2}, então \cosh x = \cosh^2 \frac{x}{2} + \sinh^2 \frac{x}{2} = 1 + 2 \sinh^2 \frac{x}{2}, portanto

\sinh^2 \frac{x}{2} = \frac{\cosh x - 1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.